Like many other developed economies, countries in the EU have adopted a proactive and progressive approach to cryptocurrencies. It has admitted its openness to cryptocurrencies but has equally been vocal about the requirement for strong regulations to avoid potential abuse by criminal entities and terrorists.
In this article, we will discuss the evolution of the cryptocurrency regulation framework in the European Union (EU), with a special focus on recent developments such as the European Commission’s proposed regulation on Markets in Crypto Assets (MiCA). We will also discuss how crypto businesses in the EU can comply with changing regulations by using cutting-edge technologies.
Are Cryptocurrencies Legal In The EU?
Cryptocurrencies are legal throughout the single-currency region, however legislation governing crypto exchanges differs by member countries. Cryptocurrencies are subject to capital gains taxes ranging from 0% to 50% in member nations.
The European Commission is now looking to address this fragmented nature and set up a framework, allowing companies that received licence in one member country to operate anywhere in the region.
Notable Regulatory Developments
When cryptocurrencies were trending as alternative payment and investment options in early 2010s, the EU started giving guidance and analysis on potential threats and regulatory needs about these digital assets.
The EU’s Fifth Anti-Money Laundering Directive (5AMLD), which came into effect in January 2020, brought cryptocurrency-fiat currency exchanges under the scope of its anti-money laundering (AML) legislation. The directive required crypto exchanges to perform customer due diligence measures and to fulfil standard reporting requirements. In addition, crypto businesses in the region have to register themselves with local authorities.
The Sixth Anti-Money Laundering Directive (6AMLD), which came into force in December 2020, broadened the list of money laundering predicate offences. The updated list included cybercrime, making compliance measures more stringent for cryptocurrency firms.
In July 2021, the European Commission came up with four legislative proposals. The fourth proposed legislation would help trace transfers of crypto-assets and limit large cash payments. With the regulation, in accordance with the FATF Travel Rule, the EU looks to prevent the crypto-asset sector from being abused for financial crimes.
To file a suspicious transaction report as per the Travel Rule, the EU has set a threshold of €1,000, in line with the FATF recommended guidelines. The rule also applies to transactions where an asset appears to be linked to other transfers amounting to €1,000.
The proposal states: “given that virtual asset transfers are subject to similar money laundering and terrorist financing risks as wire fund transfers, they must also be submitted to similar requirements, and it appears logical to use the same legislative instrument to address these common issues.”
Following a European parliament and council discussion, the plans are scheduled to be operational by 2024.
Current Legal Status Of Cryptocurrencies And Exchanges
At present, the EU classifies cryptocurrencies and crypto-assets as qualified financial instruments (QFIs). Therefore, banks, credit firms or investment firms in the region can hold and gain profits from crypto-assets under the EU laws. They may also legally offer services in crypto-assets and cryptocurrencies.
However, regulators such as France’s Autorite des Marches Financiers (AMF), Italy’s Ministry of Finance and Germany’s Financial Supervisory Authority (BaFin) have set up registration requirements for crypto businesses.
The EU Looks To Unify The Bloc’s Cryptocurrency Regulations
In recent years, the EU has taken initiatives to harmonise the European regulations of digital assets. In September 2020, the EU Commission proposed the Market in Crypto-Assets Regulation (MiCA), which laid out rules that regulate the region's stable coins and crypto asset providers.
Under the new rule, all crypto issuers will have to first publish a whitepaper and send it to their national supervisory authorities twenty days before the first issue. It also has rules against insider trading and market manipulation on crypto exchanges.
On 14th March, 2022, The European Union parliament’s Economic and Monetary Affairs Committee voted in favour of the MiCA framework. According to an official statement, the new framework aims to boost users’ confidence and support the development of digital services and alternative payment instruments.
The parliament will now negotiate with the EU governments on the bill's final shape.
What Does The New Crypto Policy Mean?
No ban on bitcoin
The draft had a provision to limit the use of cryptocurrencies that rely on the energy-intensive consensus mechanism termed as proof-of-work. Had come into effect, it would have banned bitcoin, the most popular cryptocurrency, across the EU.
In order to reduce carbon footprint relate to crypto operations, the parliament committee has now accepted an alternative provision that would require the European Commission to come up with a proposal to include any crypto-asset mining activities that contribute substantially to climate change in the EU taxonomy for sustainable activities by 1st January, 2025.
Supervision of crypto assets
The committee wants the European Securities and Markets Authority (ESMA) to supervise the issuance of asset-referenced tokens, and the European Banking Authority (EBA) to supervise electronic money tokens. In addition, the framework supports market integrity and financial stability by regulating public offers of crypto-assets.
Consumer protection
The provisions in the draft require those who are issuing and trading crypto assets (including asset-referenced tokens and e-money tokens) to ensure transparency and disclosure. As such, consumers would be better informed about risks, costs and charges related to cryptocurrencies. In addition, the draft includes measures against market manipulation and to prevent money laundering, terrorist financing and other criminal activities.
Using Tech To Stay Compliant
Crypto service providers need to have a well-designed AML compliance programme to adhere to all existing and emerging regulations. This should be a well-balanced combination of compliance personal and technology. Having an in-house compliance team may be feasible only for large financial institutions. However, this is usually very expensive and impractical for smaller firms. They would have to rely more on highly intelligent process automation tools and platforms to sift out illegitimate transactions from large data sets.
We have created a first-of-its-kind AFC Network to effectively solve the shortcomings of the present AML transaction monitoring environment.
Through collective intelligence and continual learning, our AML solution provides a novel means of identifying money laundering. Financial institutions will be able to capture shifting customer behaviour and stop bad actors with high accuracy and speed using this advanced machine learning approach, enhancing returns and risk coverage.
It detects suspicious cases and prioritises high-accuracy notifications without requiring personal information. We use this technique to combat money laundering related to cryptocurrencies successfully. Our solution can be scaled to cover any typologies spanning products, places, tactics, and predicate crime for the purpose of locating cryptocurrency-related funds.
Speak to one of our experts today to learn about our solution and how it helps companies that handle crypto remain compliant.
Experience the most intelligent AML and fraud prevention platform
Experience the most intelligent AML and fraud prevention platform
Experience the most intelligent AML and fraud prevention platform
Top AML Scenarios in ASEAN

The Role of AML Software in Compliance

The Role of AML Software in Compliance


We’ve received your details and our team will be in touch shortly.
Ready to Streamline Your Anti-Financial Crime Compliance?
Our Thought Leadership Guides
Building a Stronger Defence: How an Anti-Fraud System Protects Singapore’s Financial Institutions
Fraud is evolving fast—and your defences need to evolve faster.
Singapore’s financial sector, long considered a benchmark for trust and security, is facing a new wave of fraud threats. As scammers become more coordinated, tech-savvy, and cross-border in nature, the old ways of fighting fraud no longer suffice. It’s time to talk about the real solution: a modern Anti-Fraud System.
In this blog, we explore what makes an effective anti-fraud system, how it works, and why it’s essential for financial institutions operating in Singapore.

What is an Anti-Fraud System?
An anti-fraud system is a set of technologies, processes, and intelligence models that work together to detect and prevent fraudulent activities in real time. It goes beyond basic rule-based monitoring and includes:
- Behavioural analytics
- Machine learning and anomaly detection
- Real-time alerts and case management
- Integration with external risk databases
This system forms the first line of defence for banks, fintechs, and payment platforms—helping them identify fraud before it causes financial loss or reputational damage.
The Fraud Landscape in Singapore: Why This Matters
Singapore’s position as a global financial hub makes it an attractive target for fraudsters. According to the latest police reports:
- Over S$1.3 billion was lost to scams between 2021 and 2024
- Investment scams, phishing, and business email compromise (BEC) are among the top fraud types
- Mule accounts and cross-border remittance laundering continue to rise
This changing landscape demands real-time protection. Relying solely on manual reviews or post-fraud investigations can leave institutions exposed.
Core Features of a Modern Anti-Fraud System
An effective anti-fraud solution is not just a dashboard with alerts. It’s a layered, intelligent system designed to evolve with the threat. Here are its key components:
1. Real-Time Transaction Monitoring
Detect suspicious patterns as they happen—such as unusual velocity, destination mismatches, or abnormal timings.
2. Behavioural Analytics
Understand baseline customer behaviours and flag deviations, even if the transaction appears normal on the surface.
3. Multi-Channel Integration
Monitor fraud signals across payments, digital banking, mobile apps, ATMs, and even offline touchpoints.
4. Risk Scoring and Decision Engines
Assign dynamic risk scores based on real-time data, and automate low-risk approvals or high-risk interventions.
5. Case Management Workflows
Enable investigation teams to prioritise, narrate, and report fraud cases efficiently within a unified system.
6. Continuous Learning via AI
Use feedback loops to improve detection models and adapt to new fraud techniques over time.
Key Fraud Types a Strong System Should Catch
- Account Takeover (ATO): Where fraudsters use stolen credentials or biometrics to hijack accounts
- Authorised Push Payment Fraud (APP): Victims are socially engineered into sending money willingly
- Synthetic Identity Fraud: Fake profiles created with a mix of real and false data to open accounts
- Money Mule Activity: Rapid in-and-out fund movement across multiple accounts, often linked to scams
- Payment Diversion & Invoice Fraud: Common in B2B transactions and cross-border settlements
Compliance and Fraud: Two Sides of the Same Coin
While AML and fraud prevention often sit in different departments, modern anti-fraud systems blur the lines. For example:
- A mule account used in a scam can also be part of a money laundering ring
- Layering via utility payments may signal both laundering and unauthorised funds
Singapore’s regulators—including MAS and the Commercial Affairs Department—expect institutions to implement robust controls across both fraud and AML risk. That means your system should support integrated oversight.
Challenges Faced by Financial Institutions
Implementing a strong anti-fraud system is not without its hurdles:
- High false positives overwhelm investigation teams
- Siloed systems between fraud, compliance, and customer experience teams
- Lack of localised threat data, especially for emerging typologies
- Legacy infrastructure that can't scale with real-time needs
To solve these challenges, the solution must be both intelligent and adaptable.
How Tookitaki Helps: A Next-Gen Anti-Fraud System for Singapore
Tookitaki’s FinCense platform is a purpose-built compliance suite that brings AML and fraud detection under one roof. For anti-fraud operations, it offers:
- Real-time monitoring across all payment types
- Federated learning to learn from shared risk signals across banks without sharing sensitive data
- Scenario-based typologies curated from the AFC Ecosystem to cover mule networks, scam layering, and synthetic identities
- AI-powered Smart Disposition Engine that reduces investigation time and false alerts
Singapore institutions already using Tookitaki report:
- 3.5x analyst productivity improvement
- 72% reduction in false positives
- Faster detection of new scam types through community-driven scenarios

Five Best Practices to Strengthen Your Anti-Fraud System
- Localise Detection Models: Use region-specific typologies and scam techniques
- Integrate AML and Fraud: Build a shared layer of intelligence
- Automate Where Possible: Focus your analysts on complex cases
- Use Explainable AI: Ensure regulators and investigators can audit decisions
- Collaborate with Ecosystems: Tap into shared intelligence from peers and industry networks
Final Thoughts: Smarter, Not Just Faster
In the race against fraud, speed matters. But intelligence matters more.
A modern anti-fraud system helps Singapore’s financial institutions move from reactive to proactive. It doesn’t just flag suspicious transactions—it understands context, learns from patterns, and works collaboratively across departments.
The result? Stronger trust. Lower losses. And a future-proof defence.

Inside the Modern Transaction Monitoring System: How Banks Detect Risk in Real Time
Every suspicious transaction tells a story — the challenge is recognising it before the money disappears.
Introduction
Transaction monitoring has become one of the most critical pillars of financial crime prevention. For banks and financial institutions in the Philippines, it sits at the intersection of regulatory compliance, operational resilience, and customer trust.
As payment volumes increase and digital channels expand, the number of transactions flowing through financial systems has grown exponentially. At the same time, financial crime has become faster, more fragmented, and harder to detect. Criminal networks no longer rely on single large transactions. Instead, they move funds through rapid, low-value transfers, mule accounts, digital wallets, and cross-border corridors.
In this environment, a transaction monitoring system is no longer just a regulatory requirement. It is the frontline defence that determines whether a financial institution can detect suspicious activity early, respond effectively, and demonstrate control to regulators.
Yet many institutions still operate monitoring systems that were designed for a different era. These systems struggle with scale, generate excessive false positives, and provide limited insight into how risk is truly evolving.
Modern transaction monitoring systems are changing this reality. By combining advanced analytics, behavioural intelligence, and real-time processing, they allow institutions to move from reactive detection to proactive risk management.

Why Transaction Monitoring Matters More Than Ever
Transaction monitoring has always been a core AML control, but its importance has increased sharply in recent years.
In the Philippines, several factors have intensified the need for strong monitoring capabilities. Digital banking adoption has accelerated, real-time payment rails are widely used, and cross-border remittances remain a major part of the financial ecosystem. These developments bring efficiency and inclusion, but they also create opportunities for misuse.
Criminals exploit speed and volume. They fragment transactions to stay below thresholds, move funds rapidly across accounts, and use networks of mules to obscure ownership. Traditional monitoring approaches, which focus on static rules and isolated transactions, often fail to capture these patterns.
Regulators are also raising expectations. Supervisory reviews increasingly focus on the effectiveness of transaction monitoring systems, not just their existence. Institutions are expected to demonstrate that their systems can detect emerging risks, adapt to new typologies, and produce consistent outcomes.
As a result, transaction monitoring has shifted from a compliance checkbox to a strategic capability that directly impacts regulatory confidence and institutional credibility.
What Is a Transaction Monitoring System?
A transaction monitoring system is a technology platform that continuously analyses financial transactions to identify activity that may indicate money laundering, fraud, or other financial crimes.
At its core, the system evaluates transactions against defined scenarios, rules, and models to determine whether they deviate from expected behaviour. When suspicious patterns are detected, alerts are generated for further investigation.
Modern transaction monitoring systems go far beyond simple rule-based checks. They analyse context, behaviour, relationships, and trends across large volumes of data. Rather than looking at transactions in isolation, they examine how activity unfolds over time and across accounts.
The goal is not to flag every unusual transaction, but to identify patterns that genuinely indicate risk, while minimising unnecessary alerts that consume operational resources.
The Limitations of Traditional Transaction Monitoring Systems
Many financial institutions still rely on monitoring systems that were built years ago. While these systems may technically meet regulatory requirements, they often fall short in practice.
One major limitation is over-reliance on static rules. These rules are typically based on thresholds and predefined conditions. Criminals quickly learn how to stay just below these limits, rendering the rules ineffective.
Another challenge is alert volume. Traditional systems tend to generate large numbers of alerts with limited prioritisation. Investigators spend significant time clearing false positives, leaving less capacity to focus on genuinely high-risk cases.
Legacy systems also struggle with context. They may detect that a transaction is unusual, but fail to consider customer behaviour, transaction history, or related activity across accounts. This leads to fragmented analysis and inconsistent decision-making.
Finally, many older systems operate in batch mode rather than real time. In an era of instant payments, delayed detection significantly increases exposure.
These limitations highlight the need for a new generation of transaction monitoring systems designed for today’s risk environment.
What Defines a Modern Transaction Monitoring System
Modern transaction monitoring systems are built with scale, intelligence, and adaptability in mind. They are designed to handle large transaction volumes while delivering meaningful insights rather than noise.
Behaviour-Driven Monitoring
Instead of relying solely on static thresholds, modern systems learn how customers typically behave. They analyse transaction frequency, value, counterparties, channels, and timing to establish behavioural baselines. Deviations from these baselines are treated as potential risk signals.
This approach allows institutions to detect subtle changes that may indicate emerging financial crime.
Advanced Analytics and Machine Learning
Machine learning models analyse vast datasets to identify patterns that rules alone cannot detect. These models continuously refine themselves as new data becomes available, improving accuracy over time.
Importantly, modern systems ensure that these models remain explainable, allowing institutions to understand and justify why alerts are generated.
Network and Relationship Analysis
Financial crime rarely occurs in isolation. Modern transaction monitoring systems analyse relationships between accounts, customers, and counterparties to identify networks of suspicious activity. This is particularly effective for detecting mule networks and organised schemes.
Real-Time or Near-Real-Time Processing
With instant payments now common, timing is critical. Modern systems process transactions in real time or near real time, enabling institutions to act quickly when high-risk activity is detected.
Risk-Based Alert Prioritisation
Rather than treating all alerts equally, modern systems assign risk scores based on multiple factors. This helps investigators focus on the most critical cases first and improves overall efficiency.
Transaction Monitoring in the Philippine Regulatory Context
Regulatory expectations in the Philippines place strong emphasis on effective transaction monitoring. Supervisors expect institutions to implement systems that are proportionate to their size, complexity, and risk profile.
Institutions are expected to demonstrate that their monitoring scenarios reflect current risks, that thresholds are calibrated appropriately, and that alerts are investigated consistently. Regulators also expect clear documentation of how monitoring decisions are made and how systems are governed.
As financial crime typologies evolve, institutions must show that their transaction monitoring systems are updated accordingly. Static configurations that remain unchanged for long periods are increasingly viewed as a red flag.
Modern systems help institutions meet these expectations by providing transparency, adaptability, and strong governance controls.

How Tookitaki Approaches Transaction Monitoring
Tookitaki approaches transaction monitoring as an intelligence-driven capability rather than a rule-checking exercise.
At the core is FinCense, an end-to-end compliance platform that includes advanced transaction monitoring designed for banks and financial institutions operating at scale. FinCense analyses transaction data using a combination of rules, advanced analytics, and machine learning to deliver accurate and explainable alerts.
A key strength of FinCense is its ability to adapt. Scenarios and thresholds can be refined based on emerging patterns, ensuring that monitoring remains aligned with current risk realities rather than historical assumptions.
Tookitaki also introduces FinMate, an Agentic AI copilot that supports investigators during alert review. FinMate helps summarise transaction patterns, highlight key risk drivers, and provide contextual explanations, enabling faster and more consistent investigations.
Another differentiator is the AFC Ecosystem, a collaborative intelligence network where financial crime experts contribute real-world typologies and red flags. These insights continuously enrich FinCense, allowing institutions to benefit from collective intelligence without sharing sensitive data.
Together, these capabilities allow institutions to strengthen transaction monitoring while reducing operational burden.
A Practical Scenario: Improving Monitoring Outcomes
Consider a financial institution in the Philippines experiencing rising alert volumes due to increased digital transactions. Investigators are overwhelmed, and many alerts are closed as false positives after time-consuming reviews.
After modernising its transaction monitoring system, the institution introduces behavioural profiling and risk-based prioritisation. Alert volumes decrease significantly, but detection quality improves. Investigators receive clearer context for each alert, including transaction history and related account activity.
Management gains visibility through dashboards that show where risk is concentrated across products and customer segments. Regulatory reviews become more straightforward, as the institution can clearly explain how its monitoring system works and why specific alerts were generated.
The result is not only improved compliance, but also better use of resources and stronger confidence across the organisation.
Benefits of a Modern Transaction Monitoring System
A well-designed transaction monitoring system delivers benefits across multiple dimensions.
It improves detection accuracy by focusing on behaviour and patterns rather than static thresholds. It reduces false positives, freeing investigators to focus on meaningful risk. It enables faster response times, which is critical in real-time payment environments.
From a governance perspective, modern systems provide transparency and consistency, making it easier to demonstrate effectiveness to regulators and auditors. They also support scalability, allowing institutions to grow transaction volumes without proportionally increasing compliance costs.
Most importantly, effective transaction monitoring helps protect customer trust by reducing the likelihood of financial crime incidents that can damage reputation.
The Future of Transaction Monitoring Systems
Transaction monitoring will continue to evolve as financial systems become faster and more interconnected.
Future systems will place greater emphasis on predictive intelligence, identifying early indicators of risk before suspicious transactions occur. Integration between AML and fraud monitoring will deepen, enabling a more holistic view of financial crime.
Agentic AI will increasingly support investigators by interpreting patterns, summarising cases, and guiding decision-making. Collaborative intelligence models will allow institutions to learn from each other’s experiences while preserving data privacy.
Institutions that invest in modern transaction monitoring systems today will be better positioned to adapt to these changes and maintain resilience in a rapidly evolving landscape.
Conclusion
A transaction monitoring system is no longer just a regulatory control. It is a critical intelligence capability that shapes how effectively a financial institution can manage risk, respond to threats, and build trust.
Modern transaction monitoring systems move beyond static rules and fragmented analysis. They provide real-time insight, behavioural intelligence, and explainable outcomes that align with both operational needs and regulatory expectations.
With platforms like Tookitaki’s FinCense, supported by FinMate and enriched by the AFC Ecosystem, institutions can transform transaction monitoring from a source of operational strain into a strategic advantage.
In a world where financial crime moves quickly, the ability to see patterns clearly and act decisively is what sets resilient institutions apart.

Transaction Fraud Prevention Solutions: Safeguarding Malaysia’s Digital Payments Economy
As digital payments accelerate, transaction fraud prevention solutions have become the frontline defence protecting trust in Malaysia’s financial system.
Malaysia’s Transaction Boom Is Creating New Fraud Risks
Malaysia’s payments landscape has transformed at remarkable speed. Real-time transfers, DuitNow QR, e-wallets, online marketplaces, and cross-border digital commerce now power everyday transactions for consumers and businesses alike.
This growth has brought undeniable benefits. Faster payments, broader financial inclusion, and seamless digital experiences have reshaped how money moves across the country.
However, the same speed and convenience are being exploited by criminal networks. Fraud is no longer opportunistic or manual. It is organised, automated, and designed to move money before institutions can respond.
Banks and fintechs in Malaysia are now facing a surge in:
- Account takeover driven transaction fraud
- Scam related fund transfers
- Mule assisted payment fraud
- QR based fraud schemes
- Merchant fraud and fake storefronts
- Cross border transaction abuse
- Rapid layering through instant payments
Transaction fraud is no longer an isolated problem. It is tightly linked to money laundering, reputational risk, and customer trust.
This is why transaction fraud prevention solutions have become mission critical for Malaysia’s financial ecosystem.

What Are Transaction Fraud Prevention Solutions?
Transaction fraud prevention solutions are technology platforms designed to detect, prevent, and respond to fraudulent payment activity in real time.
They analyse transaction behaviour, customer profiles, device signals, and contextual data to identify suspicious activity before funds are irreversibly lost.
Modern solutions typically support:
- Real-time transaction monitoring
- Behavioural analysis
- Risk scoring and decisioning
- Fraud pattern detection
- Blocking or challenging suspicious transactions
- Alert investigation and resolution
- Integration with AML and case management systems
Unlike traditional post-transaction review tools, modern transaction fraud prevention solutions operate during the transaction, not after the loss has occurred.
Their goal is prevention, not recovery.
Why Transaction Fraud Prevention Matters in Malaysia
Malaysia’s financial ecosystem presents a unique combination of opportunity and exposure.
Several factors make advanced fraud prevention essential.
1. Instant Payments Leave No Room for Delay
With DuitNow and real-time transfers, fraudulent funds can exit the system within seconds. Manual reviews or batch monitoring are no longer effective.
2. Scams Are Driving Transaction Fraud
Investment scams, impersonation scams, and social engineering attacks often rely on victims initiating legitimate looking transfers that are, in reality, fraudulent.
3. Mule Networks Enable Scale
Criminal syndicates recruit mules to move fraud proceeds through multiple accounts, making individual transactions appear low risk.
4. Cross Border Exposure Is Rising
Fraud proceeds are often routed quickly to offshore accounts, crypto platforms, or foreign payment services.
5. Regulatory Expectations Are Increasing
Bank Negara Malaysia expects institutions to demonstrate strong controls over transaction risk, real-time detection, and effective response mechanisms.
Transaction fraud prevention solutions address these risks by analysing intent, behaviour, and context at the moment of payment.
How Transaction Fraud Prevention Solutions Work
Effective fraud prevention systems operate through a multi-layered decision process.
1. Transaction Data Ingestion
Each payment is analysed as it is initiated. The system ingests transaction attributes such as amount, frequency, beneficiary details, channel, and timing.
2. Behavioural Profiling
The system compares the transaction against the customer’s historical behaviour. Deviations from normal patterns raise risk indicators.
3. Device and Channel Intelligence
Device fingerprints, IP address patterns, and channel usage provide additional context on whether a transaction is legitimate.
4. Machine Learning Detection
ML models identify anomalies such as unusual velocity, new beneficiaries, out of pattern transfers, or coordinated behaviour across accounts.
5. Risk Scoring and Decisioning
Each transaction receives a risk score. Based on this score, the system can allow, block, or challenge the transaction in real time.
6. Alert Generation and Review
High-risk transactions generate alerts for investigation. Evidence is captured automatically to support review.
7. Continuous Learning
Investigator outcomes feed back into the models, improving accuracy over time.
This real-time loop is what makes modern fraud prevention effective against fast-moving threats.
Why Legacy Fraud Controls Are No Longer Enough
Many Malaysian institutions still rely on rule-based or reactive fraud systems. These systems struggle in today’s environment.
Common shortcomings include:
- Static rules that miss new fraud patterns
- High false positives that frustrate customers
- Manual intervention that slows response
- Limited understanding of behavioural context
- Siloed fraud and AML platforms
- Inability to detect coordinated mule activity
Criminals adapt faster than static systems. Fraud prevention must be adaptive, intelligent, and connected.

The Role of AI in Transaction Fraud Prevention
Artificial intelligence has fundamentally changed how fraud is detected and prevented.
1. Behavioural Intelligence
AI understands what is normal for each customer and flags deviations that rules cannot capture.
2. Predictive Detection
Models identify fraud patterns early, even before a transaction looks obviously suspicious.
3. Real-Time Decisioning
AI enables instant decisions without human delay.
4. Reduced False Positives
Contextual analysis ensures that legitimate customers are not unnecessarily blocked.
5. Explainable Decisions
Modern AI systems provide clear reasons for each decision, supporting customer communication and regulatory review.
AI powered transaction fraud prevention solutions are now essential for any institution operating in real time payment environments.
Tookitaki’s FinCense: A Unified Transaction Fraud Prevention Solution for Malaysia
While many platforms treat fraud as a standalone problem, Tookitaki’s FinCense approaches transaction fraud prevention as part of a broader financial crime ecosystem.
FinCense delivers a unified solution that combines fraud prevention, AML detection, onboarding intelligence, and case management into one platform.
This holistic approach is especially powerful in Malaysia’s fast-moving payments environment.
Agentic AI for Real-Time Fraud Decisions
FinCense uses Agentic AI to support real-time fraud prevention.
The system:
- Analyses transaction context instantly
- Identifies coordinated behaviour across accounts
- Generates clear explanations for risk decisions
- Recommends actions based on learned patterns
Agentic AI ensures speed without sacrificing accuracy.
Federated Intelligence Through the AFC Ecosystem
Fraud patterns rarely remain confined to one institution or one country.
FinCense connects to the Anti-Financial Crime (AFC) Ecosystem, enabling transaction fraud prevention to benefit from regional intelligence.
Malaysian institutions gain visibility into:
- Scam driven transaction patterns seen in neighbouring markets
- Mule behaviour observed across ASEAN
- Emerging QR fraud techniques
- New transaction laundering pathways
This shared intelligence strengthens fraud defences without sharing sensitive customer data.
Explainable AI for Trust and Governance
FinCense provides transparent explanations for every fraud decision.
Investigators, compliance teams, and regulators can clearly see:
- Which behaviours triggered a decision
- How risk was assessed
- Why a transaction was blocked or allowed
This transparency supports strong governance and customer communication.
Integrated Fraud and AML Protection
Transaction fraud often feeds directly into money laundering.
FinCense connects fraud events to downstream AML monitoring, enabling institutions to:
- Detect mule assisted fraud early
- Track fraud proceeds through transaction flows
- Prevent laundering before it escalates
This integrated approach is critical for disrupting organised crime.
Scenario Example: Preventing a Scam Driven Transfer in Real Time
A Malaysian customer initiates a large transfer after receiving investment advice through a messaging app.
Individually, the transaction looks legitimate. The customer is authenticated and has sufficient balance.
FinCense identifies the risk in real time:
- Behavioural analysis flags an unusual transfer amount for the customer.
- The beneficiary account is new and linked to multiple recent inflows.
- Transaction timing matches known scam patterns from regional intelligence.
- Agentic AI generates a risk explanation in seconds.
- The transaction is blocked and escalated for review.
The customer is protected. Funds remain secure. The scam fails.
Benefits of Transaction Fraud Prevention Solutions for Malaysian Institutions
Advanced fraud prevention delivers tangible outcomes.
- Reduced fraud losses
- Faster response to emerging threats
- Lower false positives
- Improved customer experience
- Stronger regulatory confidence
- Better visibility into fraud networks
- Seamless integration with AML controls
Transaction fraud prevention becomes a trust enabler rather than a friction point.
What to Look for in Transaction Fraud Prevention Solutions
When evaluating fraud prevention platforms, Malaysian institutions should prioritise:
Real-Time Capability
Decisions must happen during the transaction.
Behavioural Intelligence
Understanding customer behaviour is critical.
Explainability
Every decision should be transparent and defensible.
Integration
Fraud prevention must connect with AML and case management.
Regional Intelligence
ASEAN-specific fraud patterns must be included.
Scalability
Systems must perform under high transaction volumes.
FinCense meets all these criteria through its unified, AI-driven architecture.
The Future of Transaction Fraud Prevention in Malaysia
Transaction fraud will continue to evolve as criminals adapt to new technologies.
Future trends include:
- Greater use of behavioural biometrics
- Cross-institution intelligence sharing
- Real-time scam intervention workflows
- Stronger consumer education integration
- Deeper convergence of fraud and AML platforms
- Responsible AI governance frameworks
Malaysia’s strong digital adoption and regulatory focus position it well to lead in advanced fraud prevention.
Conclusion
Transaction fraud is no longer a secondary risk. It is a central threat to trust in Malaysia’s digital payments ecosystem.
Transaction fraud prevention solutions must operate in real time, understand behaviour, and integrate seamlessly with AML defences.
Tookitaki’s FinCense delivers exactly this. By combining Agentic AI, federated intelligence, explainable decisioning, and unified fraud and AML protection, FinCense empowers Malaysian institutions to stop fraud before money leaves the system.
In a world where payments move instantly, prevention must move faster.

Building a Stronger Defence: How an Anti-Fraud System Protects Singapore’s Financial Institutions
Fraud is evolving fast—and your defences need to evolve faster.
Singapore’s financial sector, long considered a benchmark for trust and security, is facing a new wave of fraud threats. As scammers become more coordinated, tech-savvy, and cross-border in nature, the old ways of fighting fraud no longer suffice. It’s time to talk about the real solution: a modern Anti-Fraud System.
In this blog, we explore what makes an effective anti-fraud system, how it works, and why it’s essential for financial institutions operating in Singapore.

What is an Anti-Fraud System?
An anti-fraud system is a set of technologies, processes, and intelligence models that work together to detect and prevent fraudulent activities in real time. It goes beyond basic rule-based monitoring and includes:
- Behavioural analytics
- Machine learning and anomaly detection
- Real-time alerts and case management
- Integration with external risk databases
This system forms the first line of defence for banks, fintechs, and payment platforms—helping them identify fraud before it causes financial loss or reputational damage.
The Fraud Landscape in Singapore: Why This Matters
Singapore’s position as a global financial hub makes it an attractive target for fraudsters. According to the latest police reports:
- Over S$1.3 billion was lost to scams between 2021 and 2024
- Investment scams, phishing, and business email compromise (BEC) are among the top fraud types
- Mule accounts and cross-border remittance laundering continue to rise
This changing landscape demands real-time protection. Relying solely on manual reviews or post-fraud investigations can leave institutions exposed.
Core Features of a Modern Anti-Fraud System
An effective anti-fraud solution is not just a dashboard with alerts. It’s a layered, intelligent system designed to evolve with the threat. Here are its key components:
1. Real-Time Transaction Monitoring
Detect suspicious patterns as they happen—such as unusual velocity, destination mismatches, or abnormal timings.
2. Behavioural Analytics
Understand baseline customer behaviours and flag deviations, even if the transaction appears normal on the surface.
3. Multi-Channel Integration
Monitor fraud signals across payments, digital banking, mobile apps, ATMs, and even offline touchpoints.
4. Risk Scoring and Decision Engines
Assign dynamic risk scores based on real-time data, and automate low-risk approvals or high-risk interventions.
5. Case Management Workflows
Enable investigation teams to prioritise, narrate, and report fraud cases efficiently within a unified system.
6. Continuous Learning via AI
Use feedback loops to improve detection models and adapt to new fraud techniques over time.
Key Fraud Types a Strong System Should Catch
- Account Takeover (ATO): Where fraudsters use stolen credentials or biometrics to hijack accounts
- Authorised Push Payment Fraud (APP): Victims are socially engineered into sending money willingly
- Synthetic Identity Fraud: Fake profiles created with a mix of real and false data to open accounts
- Money Mule Activity: Rapid in-and-out fund movement across multiple accounts, often linked to scams
- Payment Diversion & Invoice Fraud: Common in B2B transactions and cross-border settlements
Compliance and Fraud: Two Sides of the Same Coin
While AML and fraud prevention often sit in different departments, modern anti-fraud systems blur the lines. For example:
- A mule account used in a scam can also be part of a money laundering ring
- Layering via utility payments may signal both laundering and unauthorised funds
Singapore’s regulators—including MAS and the Commercial Affairs Department—expect institutions to implement robust controls across both fraud and AML risk. That means your system should support integrated oversight.
Challenges Faced by Financial Institutions
Implementing a strong anti-fraud system is not without its hurdles:
- High false positives overwhelm investigation teams
- Siloed systems between fraud, compliance, and customer experience teams
- Lack of localised threat data, especially for emerging typologies
- Legacy infrastructure that can't scale with real-time needs
To solve these challenges, the solution must be both intelligent and adaptable.
How Tookitaki Helps: A Next-Gen Anti-Fraud System for Singapore
Tookitaki’s FinCense platform is a purpose-built compliance suite that brings AML and fraud detection under one roof. For anti-fraud operations, it offers:
- Real-time monitoring across all payment types
- Federated learning to learn from shared risk signals across banks without sharing sensitive data
- Scenario-based typologies curated from the AFC Ecosystem to cover mule networks, scam layering, and synthetic identities
- AI-powered Smart Disposition Engine that reduces investigation time and false alerts
Singapore institutions already using Tookitaki report:
- 3.5x analyst productivity improvement
- 72% reduction in false positives
- Faster detection of new scam types through community-driven scenarios

Five Best Practices to Strengthen Your Anti-Fraud System
- Localise Detection Models: Use region-specific typologies and scam techniques
- Integrate AML and Fraud: Build a shared layer of intelligence
- Automate Where Possible: Focus your analysts on complex cases
- Use Explainable AI: Ensure regulators and investigators can audit decisions
- Collaborate with Ecosystems: Tap into shared intelligence from peers and industry networks
Final Thoughts: Smarter, Not Just Faster
In the race against fraud, speed matters. But intelligence matters more.
A modern anti-fraud system helps Singapore’s financial institutions move from reactive to proactive. It doesn’t just flag suspicious transactions—it understands context, learns from patterns, and works collaboratively across departments.
The result? Stronger trust. Lower losses. And a future-proof defence.

Inside the Modern Transaction Monitoring System: How Banks Detect Risk in Real Time
Every suspicious transaction tells a story — the challenge is recognising it before the money disappears.
Introduction
Transaction monitoring has become one of the most critical pillars of financial crime prevention. For banks and financial institutions in the Philippines, it sits at the intersection of regulatory compliance, operational resilience, and customer trust.
As payment volumes increase and digital channels expand, the number of transactions flowing through financial systems has grown exponentially. At the same time, financial crime has become faster, more fragmented, and harder to detect. Criminal networks no longer rely on single large transactions. Instead, they move funds through rapid, low-value transfers, mule accounts, digital wallets, and cross-border corridors.
In this environment, a transaction monitoring system is no longer just a regulatory requirement. It is the frontline defence that determines whether a financial institution can detect suspicious activity early, respond effectively, and demonstrate control to regulators.
Yet many institutions still operate monitoring systems that were designed for a different era. These systems struggle with scale, generate excessive false positives, and provide limited insight into how risk is truly evolving.
Modern transaction monitoring systems are changing this reality. By combining advanced analytics, behavioural intelligence, and real-time processing, they allow institutions to move from reactive detection to proactive risk management.

Why Transaction Monitoring Matters More Than Ever
Transaction monitoring has always been a core AML control, but its importance has increased sharply in recent years.
In the Philippines, several factors have intensified the need for strong monitoring capabilities. Digital banking adoption has accelerated, real-time payment rails are widely used, and cross-border remittances remain a major part of the financial ecosystem. These developments bring efficiency and inclusion, but they also create opportunities for misuse.
Criminals exploit speed and volume. They fragment transactions to stay below thresholds, move funds rapidly across accounts, and use networks of mules to obscure ownership. Traditional monitoring approaches, which focus on static rules and isolated transactions, often fail to capture these patterns.
Regulators are also raising expectations. Supervisory reviews increasingly focus on the effectiveness of transaction monitoring systems, not just their existence. Institutions are expected to demonstrate that their systems can detect emerging risks, adapt to new typologies, and produce consistent outcomes.
As a result, transaction monitoring has shifted from a compliance checkbox to a strategic capability that directly impacts regulatory confidence and institutional credibility.
What Is a Transaction Monitoring System?
A transaction monitoring system is a technology platform that continuously analyses financial transactions to identify activity that may indicate money laundering, fraud, or other financial crimes.
At its core, the system evaluates transactions against defined scenarios, rules, and models to determine whether they deviate from expected behaviour. When suspicious patterns are detected, alerts are generated for further investigation.
Modern transaction monitoring systems go far beyond simple rule-based checks. They analyse context, behaviour, relationships, and trends across large volumes of data. Rather than looking at transactions in isolation, they examine how activity unfolds over time and across accounts.
The goal is not to flag every unusual transaction, but to identify patterns that genuinely indicate risk, while minimising unnecessary alerts that consume operational resources.
The Limitations of Traditional Transaction Monitoring Systems
Many financial institutions still rely on monitoring systems that were built years ago. While these systems may technically meet regulatory requirements, they often fall short in practice.
One major limitation is over-reliance on static rules. These rules are typically based on thresholds and predefined conditions. Criminals quickly learn how to stay just below these limits, rendering the rules ineffective.
Another challenge is alert volume. Traditional systems tend to generate large numbers of alerts with limited prioritisation. Investigators spend significant time clearing false positives, leaving less capacity to focus on genuinely high-risk cases.
Legacy systems also struggle with context. They may detect that a transaction is unusual, but fail to consider customer behaviour, transaction history, or related activity across accounts. This leads to fragmented analysis and inconsistent decision-making.
Finally, many older systems operate in batch mode rather than real time. In an era of instant payments, delayed detection significantly increases exposure.
These limitations highlight the need for a new generation of transaction monitoring systems designed for today’s risk environment.
What Defines a Modern Transaction Monitoring System
Modern transaction monitoring systems are built with scale, intelligence, and adaptability in mind. They are designed to handle large transaction volumes while delivering meaningful insights rather than noise.
Behaviour-Driven Monitoring
Instead of relying solely on static thresholds, modern systems learn how customers typically behave. They analyse transaction frequency, value, counterparties, channels, and timing to establish behavioural baselines. Deviations from these baselines are treated as potential risk signals.
This approach allows institutions to detect subtle changes that may indicate emerging financial crime.
Advanced Analytics and Machine Learning
Machine learning models analyse vast datasets to identify patterns that rules alone cannot detect. These models continuously refine themselves as new data becomes available, improving accuracy over time.
Importantly, modern systems ensure that these models remain explainable, allowing institutions to understand and justify why alerts are generated.
Network and Relationship Analysis
Financial crime rarely occurs in isolation. Modern transaction monitoring systems analyse relationships between accounts, customers, and counterparties to identify networks of suspicious activity. This is particularly effective for detecting mule networks and organised schemes.
Real-Time or Near-Real-Time Processing
With instant payments now common, timing is critical. Modern systems process transactions in real time or near real time, enabling institutions to act quickly when high-risk activity is detected.
Risk-Based Alert Prioritisation
Rather than treating all alerts equally, modern systems assign risk scores based on multiple factors. This helps investigators focus on the most critical cases first and improves overall efficiency.
Transaction Monitoring in the Philippine Regulatory Context
Regulatory expectations in the Philippines place strong emphasis on effective transaction monitoring. Supervisors expect institutions to implement systems that are proportionate to their size, complexity, and risk profile.
Institutions are expected to demonstrate that their monitoring scenarios reflect current risks, that thresholds are calibrated appropriately, and that alerts are investigated consistently. Regulators also expect clear documentation of how monitoring decisions are made and how systems are governed.
As financial crime typologies evolve, institutions must show that their transaction monitoring systems are updated accordingly. Static configurations that remain unchanged for long periods are increasingly viewed as a red flag.
Modern systems help institutions meet these expectations by providing transparency, adaptability, and strong governance controls.

How Tookitaki Approaches Transaction Monitoring
Tookitaki approaches transaction monitoring as an intelligence-driven capability rather than a rule-checking exercise.
At the core is FinCense, an end-to-end compliance platform that includes advanced transaction monitoring designed for banks and financial institutions operating at scale. FinCense analyses transaction data using a combination of rules, advanced analytics, and machine learning to deliver accurate and explainable alerts.
A key strength of FinCense is its ability to adapt. Scenarios and thresholds can be refined based on emerging patterns, ensuring that monitoring remains aligned with current risk realities rather than historical assumptions.
Tookitaki also introduces FinMate, an Agentic AI copilot that supports investigators during alert review. FinMate helps summarise transaction patterns, highlight key risk drivers, and provide contextual explanations, enabling faster and more consistent investigations.
Another differentiator is the AFC Ecosystem, a collaborative intelligence network where financial crime experts contribute real-world typologies and red flags. These insights continuously enrich FinCense, allowing institutions to benefit from collective intelligence without sharing sensitive data.
Together, these capabilities allow institutions to strengthen transaction monitoring while reducing operational burden.
A Practical Scenario: Improving Monitoring Outcomes
Consider a financial institution in the Philippines experiencing rising alert volumes due to increased digital transactions. Investigators are overwhelmed, and many alerts are closed as false positives after time-consuming reviews.
After modernising its transaction monitoring system, the institution introduces behavioural profiling and risk-based prioritisation. Alert volumes decrease significantly, but detection quality improves. Investigators receive clearer context for each alert, including transaction history and related account activity.
Management gains visibility through dashboards that show where risk is concentrated across products and customer segments. Regulatory reviews become more straightforward, as the institution can clearly explain how its monitoring system works and why specific alerts were generated.
The result is not only improved compliance, but also better use of resources and stronger confidence across the organisation.
Benefits of a Modern Transaction Monitoring System
A well-designed transaction monitoring system delivers benefits across multiple dimensions.
It improves detection accuracy by focusing on behaviour and patterns rather than static thresholds. It reduces false positives, freeing investigators to focus on meaningful risk. It enables faster response times, which is critical in real-time payment environments.
From a governance perspective, modern systems provide transparency and consistency, making it easier to demonstrate effectiveness to regulators and auditors. They also support scalability, allowing institutions to grow transaction volumes without proportionally increasing compliance costs.
Most importantly, effective transaction monitoring helps protect customer trust by reducing the likelihood of financial crime incidents that can damage reputation.
The Future of Transaction Monitoring Systems
Transaction monitoring will continue to evolve as financial systems become faster and more interconnected.
Future systems will place greater emphasis on predictive intelligence, identifying early indicators of risk before suspicious transactions occur. Integration between AML and fraud monitoring will deepen, enabling a more holistic view of financial crime.
Agentic AI will increasingly support investigators by interpreting patterns, summarising cases, and guiding decision-making. Collaborative intelligence models will allow institutions to learn from each other’s experiences while preserving data privacy.
Institutions that invest in modern transaction monitoring systems today will be better positioned to adapt to these changes and maintain resilience in a rapidly evolving landscape.
Conclusion
A transaction monitoring system is no longer just a regulatory control. It is a critical intelligence capability that shapes how effectively a financial institution can manage risk, respond to threats, and build trust.
Modern transaction monitoring systems move beyond static rules and fragmented analysis. They provide real-time insight, behavioural intelligence, and explainable outcomes that align with both operational needs and regulatory expectations.
With platforms like Tookitaki’s FinCense, supported by FinMate and enriched by the AFC Ecosystem, institutions can transform transaction monitoring from a source of operational strain into a strategic advantage.
In a world where financial crime moves quickly, the ability to see patterns clearly and act decisively is what sets resilient institutions apart.

Transaction Fraud Prevention Solutions: Safeguarding Malaysia’s Digital Payments Economy
As digital payments accelerate, transaction fraud prevention solutions have become the frontline defence protecting trust in Malaysia’s financial system.
Malaysia’s Transaction Boom Is Creating New Fraud Risks
Malaysia’s payments landscape has transformed at remarkable speed. Real-time transfers, DuitNow QR, e-wallets, online marketplaces, and cross-border digital commerce now power everyday transactions for consumers and businesses alike.
This growth has brought undeniable benefits. Faster payments, broader financial inclusion, and seamless digital experiences have reshaped how money moves across the country.
However, the same speed and convenience are being exploited by criminal networks. Fraud is no longer opportunistic or manual. It is organised, automated, and designed to move money before institutions can respond.
Banks and fintechs in Malaysia are now facing a surge in:
- Account takeover driven transaction fraud
- Scam related fund transfers
- Mule assisted payment fraud
- QR based fraud schemes
- Merchant fraud and fake storefronts
- Cross border transaction abuse
- Rapid layering through instant payments
Transaction fraud is no longer an isolated problem. It is tightly linked to money laundering, reputational risk, and customer trust.
This is why transaction fraud prevention solutions have become mission critical for Malaysia’s financial ecosystem.

What Are Transaction Fraud Prevention Solutions?
Transaction fraud prevention solutions are technology platforms designed to detect, prevent, and respond to fraudulent payment activity in real time.
They analyse transaction behaviour, customer profiles, device signals, and contextual data to identify suspicious activity before funds are irreversibly lost.
Modern solutions typically support:
- Real-time transaction monitoring
- Behavioural analysis
- Risk scoring and decisioning
- Fraud pattern detection
- Blocking or challenging suspicious transactions
- Alert investigation and resolution
- Integration with AML and case management systems
Unlike traditional post-transaction review tools, modern transaction fraud prevention solutions operate during the transaction, not after the loss has occurred.
Their goal is prevention, not recovery.
Why Transaction Fraud Prevention Matters in Malaysia
Malaysia’s financial ecosystem presents a unique combination of opportunity and exposure.
Several factors make advanced fraud prevention essential.
1. Instant Payments Leave No Room for Delay
With DuitNow and real-time transfers, fraudulent funds can exit the system within seconds. Manual reviews or batch monitoring are no longer effective.
2. Scams Are Driving Transaction Fraud
Investment scams, impersonation scams, and social engineering attacks often rely on victims initiating legitimate looking transfers that are, in reality, fraudulent.
3. Mule Networks Enable Scale
Criminal syndicates recruit mules to move fraud proceeds through multiple accounts, making individual transactions appear low risk.
4. Cross Border Exposure Is Rising
Fraud proceeds are often routed quickly to offshore accounts, crypto platforms, or foreign payment services.
5. Regulatory Expectations Are Increasing
Bank Negara Malaysia expects institutions to demonstrate strong controls over transaction risk, real-time detection, and effective response mechanisms.
Transaction fraud prevention solutions address these risks by analysing intent, behaviour, and context at the moment of payment.
How Transaction Fraud Prevention Solutions Work
Effective fraud prevention systems operate through a multi-layered decision process.
1. Transaction Data Ingestion
Each payment is analysed as it is initiated. The system ingests transaction attributes such as amount, frequency, beneficiary details, channel, and timing.
2. Behavioural Profiling
The system compares the transaction against the customer’s historical behaviour. Deviations from normal patterns raise risk indicators.
3. Device and Channel Intelligence
Device fingerprints, IP address patterns, and channel usage provide additional context on whether a transaction is legitimate.
4. Machine Learning Detection
ML models identify anomalies such as unusual velocity, new beneficiaries, out of pattern transfers, or coordinated behaviour across accounts.
5. Risk Scoring and Decisioning
Each transaction receives a risk score. Based on this score, the system can allow, block, or challenge the transaction in real time.
6. Alert Generation and Review
High-risk transactions generate alerts for investigation. Evidence is captured automatically to support review.
7. Continuous Learning
Investigator outcomes feed back into the models, improving accuracy over time.
This real-time loop is what makes modern fraud prevention effective against fast-moving threats.
Why Legacy Fraud Controls Are No Longer Enough
Many Malaysian institutions still rely on rule-based or reactive fraud systems. These systems struggle in today’s environment.
Common shortcomings include:
- Static rules that miss new fraud patterns
- High false positives that frustrate customers
- Manual intervention that slows response
- Limited understanding of behavioural context
- Siloed fraud and AML platforms
- Inability to detect coordinated mule activity
Criminals adapt faster than static systems. Fraud prevention must be adaptive, intelligent, and connected.

The Role of AI in Transaction Fraud Prevention
Artificial intelligence has fundamentally changed how fraud is detected and prevented.
1. Behavioural Intelligence
AI understands what is normal for each customer and flags deviations that rules cannot capture.
2. Predictive Detection
Models identify fraud patterns early, even before a transaction looks obviously suspicious.
3. Real-Time Decisioning
AI enables instant decisions without human delay.
4. Reduced False Positives
Contextual analysis ensures that legitimate customers are not unnecessarily blocked.
5. Explainable Decisions
Modern AI systems provide clear reasons for each decision, supporting customer communication and regulatory review.
AI powered transaction fraud prevention solutions are now essential for any institution operating in real time payment environments.
Tookitaki’s FinCense: A Unified Transaction Fraud Prevention Solution for Malaysia
While many platforms treat fraud as a standalone problem, Tookitaki’s FinCense approaches transaction fraud prevention as part of a broader financial crime ecosystem.
FinCense delivers a unified solution that combines fraud prevention, AML detection, onboarding intelligence, and case management into one platform.
This holistic approach is especially powerful in Malaysia’s fast-moving payments environment.
Agentic AI for Real-Time Fraud Decisions
FinCense uses Agentic AI to support real-time fraud prevention.
The system:
- Analyses transaction context instantly
- Identifies coordinated behaviour across accounts
- Generates clear explanations for risk decisions
- Recommends actions based on learned patterns
Agentic AI ensures speed without sacrificing accuracy.
Federated Intelligence Through the AFC Ecosystem
Fraud patterns rarely remain confined to one institution or one country.
FinCense connects to the Anti-Financial Crime (AFC) Ecosystem, enabling transaction fraud prevention to benefit from regional intelligence.
Malaysian institutions gain visibility into:
- Scam driven transaction patterns seen in neighbouring markets
- Mule behaviour observed across ASEAN
- Emerging QR fraud techniques
- New transaction laundering pathways
This shared intelligence strengthens fraud defences without sharing sensitive customer data.
Explainable AI for Trust and Governance
FinCense provides transparent explanations for every fraud decision.
Investigators, compliance teams, and regulators can clearly see:
- Which behaviours triggered a decision
- How risk was assessed
- Why a transaction was blocked or allowed
This transparency supports strong governance and customer communication.
Integrated Fraud and AML Protection
Transaction fraud often feeds directly into money laundering.
FinCense connects fraud events to downstream AML monitoring, enabling institutions to:
- Detect mule assisted fraud early
- Track fraud proceeds through transaction flows
- Prevent laundering before it escalates
This integrated approach is critical for disrupting organised crime.
Scenario Example: Preventing a Scam Driven Transfer in Real Time
A Malaysian customer initiates a large transfer after receiving investment advice through a messaging app.
Individually, the transaction looks legitimate. The customer is authenticated and has sufficient balance.
FinCense identifies the risk in real time:
- Behavioural analysis flags an unusual transfer amount for the customer.
- The beneficiary account is new and linked to multiple recent inflows.
- Transaction timing matches known scam patterns from regional intelligence.
- Agentic AI generates a risk explanation in seconds.
- The transaction is blocked and escalated for review.
The customer is protected. Funds remain secure. The scam fails.
Benefits of Transaction Fraud Prevention Solutions for Malaysian Institutions
Advanced fraud prevention delivers tangible outcomes.
- Reduced fraud losses
- Faster response to emerging threats
- Lower false positives
- Improved customer experience
- Stronger regulatory confidence
- Better visibility into fraud networks
- Seamless integration with AML controls
Transaction fraud prevention becomes a trust enabler rather than a friction point.
What to Look for in Transaction Fraud Prevention Solutions
When evaluating fraud prevention platforms, Malaysian institutions should prioritise:
Real-Time Capability
Decisions must happen during the transaction.
Behavioural Intelligence
Understanding customer behaviour is critical.
Explainability
Every decision should be transparent and defensible.
Integration
Fraud prevention must connect with AML and case management.
Regional Intelligence
ASEAN-specific fraud patterns must be included.
Scalability
Systems must perform under high transaction volumes.
FinCense meets all these criteria through its unified, AI-driven architecture.
The Future of Transaction Fraud Prevention in Malaysia
Transaction fraud will continue to evolve as criminals adapt to new technologies.
Future trends include:
- Greater use of behavioural biometrics
- Cross-institution intelligence sharing
- Real-time scam intervention workflows
- Stronger consumer education integration
- Deeper convergence of fraud and AML platforms
- Responsible AI governance frameworks
Malaysia’s strong digital adoption and regulatory focus position it well to lead in advanced fraud prevention.
Conclusion
Transaction fraud is no longer a secondary risk. It is a central threat to trust in Malaysia’s digital payments ecosystem.
Transaction fraud prevention solutions must operate in real time, understand behaviour, and integrate seamlessly with AML defences.
Tookitaki’s FinCense delivers exactly this. By combining Agentic AI, federated intelligence, explainable decisioning, and unified fraud and AML protection, FinCense empowers Malaysian institutions to stop fraud before money leaves the system.
In a world where payments move instantly, prevention must move faster.


