Compliance Hub

Third Party Money Laundering: A Complete Guide

Site Logo
Tookitaki
8 min
read

In today's global business landscape, the role of third parties in facilitating various operations has become increasingly prevalent. However, this also presents a potential gateway for illicit activities such as money laundering. Understanding the risks, types, and preventive measures associated with third-party money laundering is crucial for businesses and financial institutions alike.

Role of Third Parties in Business Operations

Before delving into the intricacies of money laundering through third parties, it is important to comprehend their role in business operations. Third parties, often intermediaries, provide essential services to businesses, enabling them to function smoothly. These can include suppliers, distributors, agents, consultants, and other service providers.

Third-party relationships can significantly expand a company's reach and capabilities, but they also introduce inherent risks. One such risk is the potential for money laundering.

Moreover, third parties play a crucial role in helping businesses navigate complex regulatory environments. They often possess specialized knowledge and expertise in areas such as legal compliance, environmental regulations, and international trade agreements. By leveraging the services of third parties, companies can ensure that they are operating within the boundaries of the law and meeting all necessary requirements.

Additionally, third parties can act as valuable strategic partners, offering insights and perspectives that may not be readily available within the organization. Collaborating with third parties can bring fresh ideas to the table, foster innovation, and drive competitive advantage in the marketplace. It is essential for businesses to carefully vet and manage their relationships with third parties to maximize the benefits while mitigating potential risks.

How is Money Laundering Possible Through Third Parties?

Money laundering through third parties exploits their involvement in legitimate transactions to obscure the origins of illicit funds. By utilizing these intermediaries, criminals can distance themselves from the illicit proceeds, making detection and tracking more challenging.

Through a complicated web of transactions, criminals can inject dirty money into legitimate business channels. This process typically involves layers of transactions and multiple third parties, making it arduous to trace the source of the funds.

One common method is trade-based money laundering, where invoices are manipulated to overstate or understate the value of goods or services, allowing the movement of illegal funds across borders.

Another way money laundering through third parties can occur is through the use of shell companies. These are often entities that exist only on paper and are used to create a complex network of transactions that obscure the true origin of the funds. Shell companies can be set up in jurisdictions with lax regulations, making it easier for criminals to hide their illicit activities.

Furthermore, money launderers may exploit the services of professional facilitators, such as lawyers or accountants, who can help legitimize the source of funds through complex legal structures. These professionals may knowingly or unknowingly assist in the laundering process, adding another layer of complexity to the illicit scheme.

Types of Money Laundering Through Third Parties

Money laundering through third parties takes various forms, each with its own characteristics and risks. Understanding these methods is crucial for detecting and preventing financial crimes. In addition to the prevalent methods mentioned, there are other intricate ways in which criminals exploit third parties to launder money.

One such method is trade-based money laundering, where criminals manipulate trade transactions to move illicit funds across borders. This can involve misrepresenting the quantity or quality of goods being traded or even falsifying the entire trade altogether. By exploiting the complexities of international trade, criminals can obscure the origin of illicit funds and integrate them into the legitimate economy.

  1. Shell companies: Criminals establish fictitious businesses to legitimize their illicit funds, often incorporating them in countries with lax regulatory oversight.
  2. False invoicing and over/under invoicing: By manipulating invoices, criminals hide the true value of the transactions, thus facilitating money laundering.
  3. Smurfing: This involves breaking down large amounts of illicit funds into smaller, less traceable transactions, often using multiple third parties.
  4. Nominees and straw men: Criminals employ individuals as nominees or straw men to provide a false sense of legitimacy to their operations, disguising the true beneficial owners.

Risks Associated with Third Party Money Laundering

The involvement of third parties in money laundering activities poses several risks to businesses and financial institutions. These risks include reputational damage, legal ramifications, monetary losses, and regulatory non-compliance.

A tainted reputation can have long-lasting effects on an organization, eroding trust and confidence among stakeholders. Legal consequences, including hefty fines and penalties, can cripple a company financially. Furthermore, failure to comply with anti-money laundering regulations can lead to loss of licenses and severe regulatory scrutiny.

Moreover, the use of third parties in money laundering schemes can also expose businesses to the risk of being unknowingly involved in other criminal activities, such as terrorist financing or drug trafficking. This can not only result in severe legal repercussions but can also tarnish the company's image in the eyes of the public and potential investors.

Additionally, the complexity of third party money laundering schemes can make it challenging for businesses to detect and prevent such activities effectively. Criminal organizations often use sophisticated methods to conceal the illicit origins of funds, making it crucial for companies to have robust anti-money laundering measures in place to safeguard their operations and assets.

The Role of Financial Institutions in Preventing Third-Party Money Laundering

Financial institutions play a vital role in combating third-party money laundering. They are at the forefront of implementing robust preventative measures to detect and deter illicit activities.

By establishing comprehensive Know Your Customer (KYC) procedures, financial institutions can better understand their customers and identify potential risks associated with third-party relationships. This includes conducting thorough due diligence to verify the identity, reputation, and reliability of third parties.

Moreover, financial institutions should enhance their transaction monitoring systems to flag any suspicious activities involving third parties and promptly report them to the relevant authorities.

Additionally, financial institutions often collaborate with regulatory bodies and law enforcement agencies to share information and intelligence on emerging money laundering trends and techniques. This partnership allows for a more coordinated and effective response to combat financial crimes perpetrated by third parties.

Furthermore, continuous training and education programs are essential for financial institution employees to stay abreast of the latest money laundering typologies and compliance requirements. This ongoing education ensures that staff members are equipped to identify red flags and take appropriate actions to prevent third-party money laundering.

Due Diligence to Avoid 3rd Party Money Laundering

Conducting due diligence on third parties is paramount to ensure compliance with anti-money laundering regulations. Companies must implement rigorous procedures that encompass:

  • Collecting necessary information to assess the legitimacy of third parties, including identification documents, business records, and references.
  • Verifying the credentials, reputation, and financial stability of potential third parties.
  • Conducting risk assessments to evaluate the potential exposure to money laundering activities.
  • Monitoring and reassessing third-party relationships on an ongoing basis.

When collecting information to assess the legitimacy of third parties, it is crucial for companies to delve deep into the background of these entities. This could involve verifying the ownership structure, understanding the nature of their business operations, and scrutinizing any past legal issues or controversies they may have been involved in. By conducting a thorough investigation, companies can gain a comprehensive understanding of the third party's integrity and reliability.

Furthermore, in the process of verifying the credentials and reputation of potential third parties, companies should not only rely on the information provided by the third party itself but also conduct independent research. This may include checking for any adverse media coverage, consulting industry databases for any red flags, and even seeking feedback from other businesses that have previously engaged with the third party. By cross-referencing information from multiple sources, companies can build a more accurate and reliable profile of the third party's trustworthiness.

Ongoing Checks to Avoid Money Laundering Through Third Parties

Preventing money laundering through third parties requires continuous vigilance and monitoring. Companies should implement ongoing checks to identify any changes in the risk profile of their third-party relationships.

This includes periodically reviewing third-party documentation, conducting site visits, and performing audits. Suspicious patterns or inconsistencies should be promptly investigated and reported to the appropriate authorities, ensuring timely action is taken to prevent money laundering.

Moreover, it is crucial for companies to establish clear communication channels with their third-party partners to ensure transparency and accountability. Regular dialogues and updates can help in maintaining a strong understanding of the business activities and financial transactions of these partners, enabling better risk assessment and detection of potential money laundering activities.

Additionally, companies can leverage technology and data analytics tools to enhance their monitoring capabilities. By implementing advanced software solutions that can analyze large volumes of data in real-time, companies can quickly identify any unusual trends or anomalies in third-party transactions, allowing for immediate investigation and mitigation of money laundering risks.

Implementing Counter Measures

To safeguard against third-party money laundering, companies can implement various countermeasures:

  • Establishing a robust internal control framework that includes strict policies, procedures, and guidelines for managing third-party relationships.
  • Promoting a strong compliance culture throughout the organization, with clear accountability and oversight.
  • Providing comprehensive training to employees to raise awareness about the risks of third-party money laundering and how to detect and report suspicious activities.
  • Utilizing technology and data analytics to enhance transaction monitoring capabilities and identify potential anomalies or irregularities in third-party transactions.

Moreover, companies can also consider conducting regular audits and due diligence checks on their third-party partners to ensure compliance with anti-money laundering regulations. These audits can help identify any gaps or weaknesses in the existing control framework and allow for prompt remedial actions to be taken.

Another effective countermeasure is to establish a dedicated compliance team responsible for monitoring and investigating third-party transactions. This team can work closely with law enforcement agencies and regulatory bodies to share information and intelligence on potential money laundering activities, thereby strengthening the company's overall anti-money laundering efforts.

Technology and Innovation in Detecting Third-Party Money Laundering

As criminals constantly adapt their strategies, the use of technology and innovation becomes crucial in detecting and preventing third-party money laundering. Financial institutions and businesses are increasingly leveraging advanced analytics, artificial intelligence, and machine learning algorithms to identify patterns of illicit activity.

These technological advancements can enable proactive monitoring, real-time alerts, and more effective risk assessment. By analyzing vast amounts of data, institutions can rapidly identify suspicious transactions and patterns associated with third-party money laundering, increasing the chances of intervention before substantial harm occurs.

Moreover, the implementation of blockchain technology has shown promise in enhancing the traceability of financial transactions, making it harder for money launderers to conceal their illicit activities. Blockchain's decentralized and transparent nature allows for a secure and tamper-proof record of transactions, providing a valuable tool in the fight against money laundering.

Additionally, biometric authentication methods, such as fingerprint or facial recognition, are being integrated into anti-money laundering processes to enhance security and reduce the risk of identity fraud. These advanced biometric technologies add an extra layer of verification, ensuring that individuals involved in financial transactions are who they claim to be.

{{cta-guide}}

How Tookitaki Can Help

Tookitaki, a leading provider of anti-money laundering solutions, offers cutting-edge technology that empowers financial institutions to combat third-party money laundering effectively.

Utilizing artificial intelligence and machine learning algorithms, Tookitaki's platform enables real-time monitoring, seamless integration with existing systems, and proactive detection of suspicious activities.

By leveraging Tookitaki's innovative solutions, financial institutions can strengthen their anti-money laundering capabilities, minimize risks associated with third-party relationships, and fulfill their regulatory responsibilities.

When it comes to combating money laundering, the landscape is constantly evolving. Criminals are becoming more sophisticated in their methods, making it crucial for financial institutions to stay ahead of the game. With Tookitaki's advanced technology, institutions can adapt to these changes quickly and effectively, ensuring that they are always one step ahead of potential threats.

Moreover, Tookitaki's platform not only identifies suspicious activities but also provides valuable insights for ongoing improvement. By analyzing patterns and trends in data, financial institutions can enhance their anti-money laundering strategies and optimize their processes for better results. This proactive approach not only increases efficiency but also reduces the likelihood of regulatory fines and reputational damage.

Don't let the complexities of third-party money laundering undermine the integrity of your financial institution. Embrace the power of Tookitaki's FinCense—an innovative operating system designed to revolutionize your anti-money laundering and fraud prevention strategies. With our federated learning model and comprehensive suite of tools, including Onboarding Suite, FRAML, Smart Screening, Customer Risk Scoring, Smart Alert Management, and Case Manager, you're equipped to detect and combat financial crimes more effectively. Experience fewer false positives, enhanced compliance, and a 360-degree customer risk profile that keeps you ahead of the curve. Ready to fortify your defenses and streamline your FRAML management processes? Talk to our experts today and join the forefront of financial crime prevention with Tookitaki's FinCense platform.

By submitting the form, you agree that your personal data will be processed to provide the requested content (and for the purposes you agreed to above) in accordance with the Privacy Notice

success icon

We’ve received your details and our team will be in touch shortly.

In the meantime, explore how Tookitaki is transforming financial crime prevention.
Learn More About Us
Oops! Something went wrong while submitting the form.

Ready to Streamline Your Anti-Financial Crime Compliance?

Our Thought Leadership Guides

Blogs
23 Dec 2025
6 min
read

Transaction Fraud Prevention Solutions: Safeguarding Malaysia’s Digital Payments Economy

As digital payments accelerate, transaction fraud prevention solutions have become the frontline defence protecting trust in Malaysia’s financial system.

Malaysia’s Transaction Boom Is Creating New Fraud Risks

Malaysia’s payments landscape has transformed at remarkable speed. Real-time transfers, DuitNow QR, e-wallets, online marketplaces, and cross-border digital commerce now power everyday transactions for consumers and businesses alike.

This growth has brought undeniable benefits. Faster payments, broader financial inclusion, and seamless digital experiences have reshaped how money moves across the country.

However, the same speed and convenience are being exploited by criminal networks. Fraud is no longer opportunistic or manual. It is organised, automated, and designed to move money before institutions can respond.

Banks and fintechs in Malaysia are now facing a surge in:

  • Account takeover driven transaction fraud
  • Scam related fund transfers
  • Mule assisted payment fraud
  • QR based fraud schemes
  • Merchant fraud and fake storefronts
  • Cross border transaction abuse
  • Rapid layering through instant payments

Transaction fraud is no longer an isolated problem. It is tightly linked to money laundering, reputational risk, and customer trust.

This is why transaction fraud prevention solutions have become mission critical for Malaysia’s financial ecosystem.

Talk to an Expert

What Are Transaction Fraud Prevention Solutions?

Transaction fraud prevention solutions are technology platforms designed to detect, prevent, and respond to fraudulent payment activity in real time.

They analyse transaction behaviour, customer profiles, device signals, and contextual data to identify suspicious activity before funds are irreversibly lost.

Modern solutions typically support:

  • Real-time transaction monitoring
  • Behavioural analysis
  • Risk scoring and decisioning
  • Fraud pattern detection
  • Blocking or challenging suspicious transactions
  • Alert investigation and resolution
  • Integration with AML and case management systems

Unlike traditional post-transaction review tools, modern transaction fraud prevention solutions operate during the transaction, not after the loss has occurred.

Their goal is prevention, not recovery.

Why Transaction Fraud Prevention Matters in Malaysia

Malaysia’s financial ecosystem presents a unique combination of opportunity and exposure.

Several factors make advanced fraud prevention essential.

1. Instant Payments Leave No Room for Delay

With DuitNow and real-time transfers, fraudulent funds can exit the system within seconds. Manual reviews or batch monitoring are no longer effective.

2. Scams Are Driving Transaction Fraud

Investment scams, impersonation scams, and social engineering attacks often rely on victims initiating legitimate looking transfers that are, in reality, fraudulent.

3. Mule Networks Enable Scale

Criminal syndicates recruit mules to move fraud proceeds through multiple accounts, making individual transactions appear low risk.

4. Cross Border Exposure Is Rising

Fraud proceeds are often routed quickly to offshore accounts, crypto platforms, or foreign payment services.

5. Regulatory Expectations Are Increasing

Bank Negara Malaysia expects institutions to demonstrate strong controls over transaction risk, real-time detection, and effective response mechanisms.

Transaction fraud prevention solutions address these risks by analysing intent, behaviour, and context at the moment of payment.

How Transaction Fraud Prevention Solutions Work

Effective fraud prevention systems operate through a multi-layered decision process.

1. Transaction Data Ingestion

Each payment is analysed as it is initiated. The system ingests transaction attributes such as amount, frequency, beneficiary details, channel, and timing.

2. Behavioural Profiling

The system compares the transaction against the customer’s historical behaviour. Deviations from normal patterns raise risk indicators.

3. Device and Channel Intelligence

Device fingerprints, IP address patterns, and channel usage provide additional context on whether a transaction is legitimate.

4. Machine Learning Detection

ML models identify anomalies such as unusual velocity, new beneficiaries, out of pattern transfers, or coordinated behaviour across accounts.

5. Risk Scoring and Decisioning

Each transaction receives a risk score. Based on this score, the system can allow, block, or challenge the transaction in real time.

6. Alert Generation and Review

High-risk transactions generate alerts for investigation. Evidence is captured automatically to support review.

7. Continuous Learning

Investigator outcomes feed back into the models, improving accuracy over time.

This real-time loop is what makes modern fraud prevention effective against fast-moving threats.

Why Legacy Fraud Controls Are No Longer Enough

Many Malaysian institutions still rely on rule-based or reactive fraud systems. These systems struggle in today’s environment.

Common shortcomings include:

  • Static rules that miss new fraud patterns
  • High false positives that frustrate customers
  • Manual intervention that slows response
  • Limited understanding of behavioural context
  • Siloed fraud and AML platforms
  • Inability to detect coordinated mule activity

Criminals adapt faster than static systems. Fraud prevention must be adaptive, intelligent, and connected.

ChatGPT Image Dec 22, 2025, 03_37_42 PM

The Role of AI in Transaction Fraud Prevention

Artificial intelligence has fundamentally changed how fraud is detected and prevented.

1. Behavioural Intelligence

AI understands what is normal for each customer and flags deviations that rules cannot capture.

2. Predictive Detection

Models identify fraud patterns early, even before a transaction looks obviously suspicious.

3. Real-Time Decisioning

AI enables instant decisions without human delay.

4. Reduced False Positives

Contextual analysis ensures that legitimate customers are not unnecessarily blocked.

5. Explainable Decisions

Modern AI systems provide clear reasons for each decision, supporting customer communication and regulatory review.

AI powered transaction fraud prevention solutions are now essential for any institution operating in real time payment environments.

Tookitaki’s FinCense: A Unified Transaction Fraud Prevention Solution for Malaysia

While many platforms treat fraud as a standalone problem, Tookitaki’s FinCense approaches transaction fraud prevention as part of a broader financial crime ecosystem.

FinCense delivers a unified solution that combines fraud prevention, AML detection, onboarding intelligence, and case management into one platform.

This holistic approach is especially powerful in Malaysia’s fast-moving payments environment.

Agentic AI for Real-Time Fraud Decisions

FinCense uses Agentic AI to support real-time fraud prevention.

The system:

  • Analyses transaction context instantly
  • Identifies coordinated behaviour across accounts
  • Generates clear explanations for risk decisions
  • Recommends actions based on learned patterns

Agentic AI ensures speed without sacrificing accuracy.

Federated Intelligence Through the AFC Ecosystem

Fraud patterns rarely remain confined to one institution or one country.

FinCense connects to the Anti-Financial Crime (AFC) Ecosystem, enabling transaction fraud prevention to benefit from regional intelligence.

Malaysian institutions gain visibility into:

  • Scam driven transaction patterns seen in neighbouring markets
  • Mule behaviour observed across ASEAN
  • Emerging QR fraud techniques
  • New transaction laundering pathways

This shared intelligence strengthens fraud defences without sharing sensitive customer data.

Explainable AI for Trust and Governance

FinCense provides transparent explanations for every fraud decision.

Investigators, compliance teams, and regulators can clearly see:

  • Which behaviours triggered a decision
  • How risk was assessed
  • Why a transaction was blocked or allowed

This transparency supports strong governance and customer communication.

Integrated Fraud and AML Protection

Transaction fraud often feeds directly into money laundering.

FinCense connects fraud events to downstream AML monitoring, enabling institutions to:

  • Detect mule assisted fraud early
  • Track fraud proceeds through transaction flows
  • Prevent laundering before it escalates

This integrated approach is critical for disrupting organised crime.

Scenario Example: Preventing a Scam Driven Transfer in Real Time

A Malaysian customer initiates a large transfer after receiving investment advice through a messaging app.

Individually, the transaction looks legitimate. The customer is authenticated and has sufficient balance.

FinCense identifies the risk in real time:

  1. Behavioural analysis flags an unusual transfer amount for the customer.
  2. The beneficiary account is new and linked to multiple recent inflows.
  3. Transaction timing matches known scam patterns from regional intelligence.
  4. Agentic AI generates a risk explanation in seconds.
  5. The transaction is blocked and escalated for review.

The customer is protected. Funds remain secure. The scam fails.

Benefits of Transaction Fraud Prevention Solutions for Malaysian Institutions

Advanced fraud prevention delivers tangible outcomes.

  • Reduced fraud losses
  • Faster response to emerging threats
  • Lower false positives
  • Improved customer experience
  • Stronger regulatory confidence
  • Better visibility into fraud networks
  • Seamless integration with AML controls

Transaction fraud prevention becomes a trust enabler rather than a friction point.

What to Look for in Transaction Fraud Prevention Solutions

When evaluating fraud prevention platforms, Malaysian institutions should prioritise:

Real-Time Capability
Decisions must happen during the transaction.

Behavioural Intelligence
Understanding customer behaviour is critical.

Explainability
Every decision should be transparent and defensible.

Integration
Fraud prevention must connect with AML and case management.

Regional Intelligence
ASEAN-specific fraud patterns must be included.

Scalability
Systems must perform under high transaction volumes.

FinCense meets all these criteria through its unified, AI-driven architecture.

The Future of Transaction Fraud Prevention in Malaysia

Transaction fraud will continue to evolve as criminals adapt to new technologies.

Future trends include:

  • Greater use of behavioural biometrics
  • Cross-institution intelligence sharing
  • Real-time scam intervention workflows
  • Stronger consumer education integration
  • Deeper convergence of fraud and AML platforms
  • Responsible AI governance frameworks

Malaysia’s strong digital adoption and regulatory focus position it well to lead in advanced fraud prevention.

Conclusion

Transaction fraud is no longer a secondary risk. It is a central threat to trust in Malaysia’s digital payments ecosystem.

Transaction fraud prevention solutions must operate in real time, understand behaviour, and integrate seamlessly with AML defences.

Tookitaki’s FinCense delivers exactly this. By combining Agentic AI, federated intelligence, explainable decisioning, and unified fraud and AML protection, FinCense empowers Malaysian institutions to stop fraud before money leaves the system.

In a world where payments move instantly, prevention must move faster.

Transaction Fraud Prevention Solutions: Safeguarding Malaysia’s Digital Payments Economy
Blogs
22 Dec 2025
6 min
read

Anti Fraud Tools: What They Actually Do Inside a Bank

Anti fraud tools are not shiny dashboards or alert engines. They are decision systems working under constant pressure, every second of every day.

Introduction

Anti fraud tools are often described as if they were shields. Buy the right technology, deploy the right rules, and fraud risk is contained. In practice, fraud prevention inside a bank looks very different.

Fraud does not arrive politely. It moves quickly, exploits customer behaviour, adapts to controls, and takes advantage of moments when systems or people hesitate. Anti fraud tools sit at the centre of this environment, making split-second decisions that affect customers, revenue, and trust.

This blog looks past vendor brochures and feature lists to examine what anti fraud tools actually do inside a bank. Not how they are marketed, but how they operate day to day, where they succeed, where they struggle, and what strong fraud capability really looks like in practice.

Talk to an Expert

Anti Fraud Tools Are Decision Engines, Not Detection Toys

At their core, anti fraud tools exist to answer one question.

Is this activity safe to allow right now?

Every fraud decision carries consequences. Block too aggressively and genuine customers are frustrated. Allow too freely and fraud losses escalate. Anti fraud tools constantly balance this tension.

Unlike many compliance controls, fraud systems often operate in real time. They must make decisions before money moves, accounts are accessed, or payments are authorised. There is no luxury of post-event investigation.

This makes anti fraud tools fundamentally different from many other risk systems.

Where Anti Fraud Tools Sit in the Bank

Inside a bank, anti fraud tools are deeply embedded across customer journeys.

They operate across:

  • Card payments
  • Online and mobile banking
  • Account logins
  • Password resets
  • Payee changes
  • Domestic transfers
  • Real time payments
  • Merchant transactions

Most customers interact with anti fraud tools without ever knowing it. A transaction approved instantly. A login flagged for extra verification. A payment delayed for review. These are all outputs of fraud decisioning.

When fraud tools work well, customers barely notice them. When they fail, customers notice immediately.

What Anti Fraud Tools Actually Do Day to Day

Anti fraud tools perform a set of core functions continuously.

1. Monitor behaviour in real time

Fraud rarely looks suspicious in isolation. It reveals itself through behaviour.

Anti fraud tools analyse:

  • Login patterns
  • Device usage
  • Location changes
  • Transaction timing
  • Velocity of actions
  • Sequence of events

A single transfer may look normal. A login followed by a password reset, a new payee addition, and a large payment within minutes tells a very different story.

2. Score risk continuously

Rather than issuing a single verdict, anti fraud tools often assign risk scores that change as behaviour evolves.

A customer might be low risk one moment and high risk the next based on:

  • New device usage
  • Unusual transaction size
  • Changes in beneficiary details
  • Failed authentication attempts

These scores guide whether activity is allowed, challenged, delayed, or blocked.

3. Trigger interventions

Anti fraud tools do not just detect. They intervene.

Interventions can include:

  • Stepping up authentication
  • Blocking transactions
  • Pausing accounts
  • Requiring manual review
  • Alerting fraud teams

Each intervention must be carefully calibrated. Too many challenges frustrate customers. Too few create exposure.

4. Support fraud investigations

Not all fraud can be resolved automatically. When cases escalate, anti fraud tools provide investigators with:

  • Behavioural timelines
  • Event sequences
  • Device and session context
  • Transaction histories
  • Risk indicators

The quality of this context determines how quickly teams can respond.

5. Learn from outcomes

Effective anti fraud tools improve over time.

They learn from:

  • Confirmed fraud cases
  • False positives
  • Customer disputes
  • Analyst decisions

This feedback loop is essential to staying ahead of evolving fraud tactics.

Why Fraud Is Harder Than Ever to Detect

Banks face a fraud landscape that is far more complex than a decade ago.

Customers are the new attack surface

Many fraud cases involve customers being tricked rather than systems being hacked. Social engineering has shifted risk from technology to human behaviour.

Speed leaves little room for correction

With instant payments and real time authorisation, fraud decisions must be right the first time.

Fraud and AML are increasingly connected

Scam proceeds often flow into laundering networks. Fraud detection cannot operate in isolation from broader financial crime intelligence.

Criminals adapt quickly

Fraudsters study controls, test thresholds, and adjust behaviour. Static rules lose effectiveness rapidly.

Where Anti Fraud Tools Commonly Fall Short

Even well funded fraud programs encounter challenges.

Excessive false positives

Rules designed to catch everything often catch too much. This leads to customer friction, operational overload, and declining trust in alerts.

Siloed data

Fraud tools that cannot see across channels miss context. Criminals exploit gaps between cards, payments, and digital banking.

Over reliance on static rules

Rules are predictable. Criminals adapt. Without behavioural intelligence, fraud tools fall behind.

Poor explainability

When analysts cannot understand why a decision was made, tuning becomes guesswork and trust erodes.

Disconnected fraud and AML teams

When fraud and AML operate in silos, patterns that span both domains remain hidden.

ChatGPT Image Dec 22, 2025, 10_46_50 AM

What Strong Anti Fraud Capability Looks Like in Practice

Banks with mature fraud programs share several characteristics.

Behaviour driven detection

Rather than relying solely on thresholds, strong tools understand normal behaviour and detect deviation.

Real time decisioning

Fraud systems operate at the speed of transactions, not in overnight batches.

Clear intervention strategies

Controls are tiered. Low risk activity flows smoothly. Medium risk triggers challenges. High risk is stopped decisively.

Analyst friendly investigations

Fraud teams see clear timelines, risk drivers, and supporting evidence without digging through multiple systems.

Continuous improvement

Models and rules evolve constantly based on new fraud patterns and outcomes.

The Intersection of Fraud and AML

Although fraud and AML serve different objectives, they increasingly intersect.

Fraud generates illicit funds.
AML tracks how those funds move.

When fraud tools detect:

  • Scam victim behaviour
  • Account takeover
  • Mule recruitment activity

That intelligence becomes critical for AML monitoring downstream.

Banks that integrate fraud insights into AML systems gain a stronger view of financial crime risk.

Technology’s Role in Modern Anti Fraud Tools

Modern anti fraud tools rely on a combination of capabilities.

  • Behavioural analytics
  • Machine learning models
  • Device intelligence
  • Network analysis
  • Real time processing
  • Analyst feedback loops

The goal is not to replace human judgement, but to focus it where it matters most.

How Banks Strengthen Anti Fraud Capability Without Increasing Friction

Strong fraud programs focus on balance.

Reduce noise first

Lowering false positives improves both customer experience and analyst effectiveness.

Invest in explainability

Teams must understand why decisions are made to tune systems effectively.

Unify data sources

Fraud decisions improve when systems see the full customer journey.

Coordinate with AML teams

Sharing intelligence reduces blind spots and improves overall financial crime detection.

Where Tookitaki Fits in the Fraud Landscape

While Tookitaki is known primarily for AML and financial crime intelligence, its approach recognises the growing convergence between fraud and money laundering risk.

By leveraging behavioural intelligence, network analysis, and typology driven insights, Tookitaki’s FinCense platform helps institutions:

  • Identify scam related behaviours early
  • Detect mule activity that begins with fraud
  • Share intelligence across the financial crime lifecycle
  • Strengthen coordination between fraud and AML teams

This approach supports Australian institutions, including community owned banks such as Regional Australia Bank, in managing complex, cross-domain risk more effectively.

The Direction Anti Fraud Tools Are Heading

Anti fraud tools are evolving in three key directions.

More intelligence, less friction

Better detection means fewer unnecessary challenges for genuine customers.

Closer integration with AML

Fraud insights will increasingly inform laundering detection and vice versa.

Greater use of AI assistance

AI will help analysts understand cases faster, not replace them.

Conclusion

Anti fraud tools are often misunderstood as simple alert engines. In reality, they are among the most critical decision systems inside a bank, operating continuously at the intersection of risk, customer experience, and trust.

Strong anti fraud capability does not come from more rules or louder alerts. It comes from intelligent detection, real time decisioning, clear explainability, and close coordination with broader financial crime controls.

Banks that understand what anti fraud tools actually do, and design their systems accordingly, are better positioned to protect customers, reduce losses, and operate confidently in an increasingly complex risk environment.

Because in modern banking, fraud prevention is not a feature.
It is a discipline.

Anti Fraud Tools: What They Actually Do Inside a Bank
Blogs
22 Dec 2025
6 min
read

Counting the Cost: How AML Compliance is Reshaping Budgets in Singapore

Singapore's financial institutions are spending more than ever to stay compliant — but are they spending smart?

As financial crime grows in sophistication, the regulatory net is tightening. For banks and fintechs in Singapore, Anti-Money Laundering (AML) compliance is no longer a checkbox—it’s a critical function that commands significant investment.

This blog takes a closer look at the real cost of AML compliance in Singapore, why it's rising, and what banks can do to reduce the burden without compromising risk controls.

Talk to an Expert

What is AML Compliance, Really?

AML compliance refers to a financial institution’s obligation to detect, prevent, and report suspicious transactions that may be linked to money laundering or terrorism financing. This includes:

  • Customer Due Diligence (CDD)
  • Transaction Monitoring
  • Screening for Sanctions, PEPs, and Adverse Media
  • Suspicious Transaction Reporting (STR)
  • Regulatory Recordkeeping

In Singapore, these requirements are enforced by the Monetary Authority of Singapore (MAS) through Notices 626 (for banks) and 824 (for payment institutions), among others.

Why is the Cost of AML Compliance Increasing in Singapore?

AML compliance is expensive—and getting more so. The cost drivers include:

1. Expanding Regulatory Requirements

New MAS guidelines around technology risk, ESG-related AML risks, and digital banking supervision add more obligations to already stretched compliance teams.

2. Explosion in Transaction Volumes

With real-time payments (PayNow, FAST) and cross-border fintech growth, transaction monitoring systems must now scale to process millions of transactions daily.

3. Complex Typologies and Threats

Fraudsters are using social engineering, deepfakes, mule networks, and shell companies, requiring more advanced and layered detection mechanisms.

4. High False Positives

Legacy systems often flag benign transactions as suspicious, leading to investigation overload and inefficient resource allocation.

5. Talent Shortage

Hiring and retaining skilled compliance analysts and investigators in Singapore is costly due to demand outpacing supply.

6. Fines and Enforcement Risks

The reputational and financial risk of non-compliance remains high, pushing institutions to overcompensate with manual checks and expensive audits.

Breaking Down the Cost Elements

The total cost of AML compliance includes both direct and indirect expenses:

Direct Costs:

  • Software licensing for AML platforms
  • Customer onboarding (KYC/CDD) systems
  • Transaction monitoring engines
  • Screening databases (sanctions, PEPs, etc.)
  • Regulatory reporting infrastructure
  • Hiring and training compliance staff

Indirect Costs:

  • Operational delays due to manual reviews
  • Customer friction due to false positives
  • Reputational risks from late filings or missed STRs
  • Opportunity cost of delayed product rollouts due to compliance constraints

Hidden Costs: The Compliance Drag on Innovation

One of the less discussed impacts of rising AML costs is the drag on digital transformation. Fintechs and neobanks, which are built for agility, often find themselves slowed down by:

  • Lengthy CDD processes
  • Rigid compliance architectures
  • Manual STR documentation

This can undermine user experience, onboarding speed, and cross-border expansion.

Singapore’s Compliance Spending Compared Globally

While Singapore’s market is smaller than the US or EU, its AML compliance burden is proportionally high due to:

  • Its position as an international financial hub
  • High exposure to cross-border flows
  • Rigorous MAS enforcement standards

According to industry estimates, large banks in Singapore spend between 4 to 7 percent of their operational budgets on compliance, with AML being the single biggest contributor.

ChatGPT Image Dec 22, 2025, 10_05_05 AM

Technology as a Cost-Optimiser, Not Just a Cost Centre

Rather than treating AML systems as cost centres, leading institutions in Singapore are now using intelligent technology to reduce costs while enhancing effectiveness. These include:

1. AI-Powered Transaction Monitoring

  • Reduces false positives by understanding behavioural patterns
  • Automates threshold tuning based on past data

2. Federated Learning Models

  • Learn from fraud and laundering typologies across banks without sharing raw data

3. AI Copilots for Investigations

  • Tools like Tookitaki’s FinMate surface relevant case context and narrate findings automatically
  • Improve investigator productivity by up to 3x

4. Scenario-Based Typologies

  • Enable proactive detection of specific threats like mule networks or BEC fraud

Tookitaki’s Approach to Reducing AML Compliance Costs

Tookitaki’s FinCense platform offers a modular, AI-driven compliance suite purpose-built for financial institutions in Singapore and beyond. Here’s how it helps reduce cost while increasing coverage:

  • Smart Disposition Engine reduces investigation times through natural language summaries
  • Federated AI shares typologies without violating data privacy laws
  • Unified platform for AML and fraud lowers integration and training costs
  • Plug-and-play scenarios allow quick rollout for new threat types

Real-world impact:

  • Up to 72% reduction in false positives
  • 3.5x improvement in analyst productivity
  • Significant savings in training and STR documentation time

How Regulators View Cost vs. Compliance

While MAS expects full compliance, it also encourages innovation and risk-based approaches. Their FinTech Regulatory Sandbox and support for AI-powered RegTech solutions signal a willingness to:

  • Balance oversight with efficiency
  • Encourage public-private collaboration
  • Support digital-first compliance architectures

This is an opportunity for Singapore’s institutions to move beyond traditional, high-cost models.

Five Strategies to Optimise AML Spend

  1. Invest in Explainable AI: Improve detection without creating audit blind spots
  2. Use Federated Typologies: Tap into industry-wide risk intelligence
  3. Unify AML and Fraud: Eliminate duplication in alerts and investigations
  4. Adopt Modular Compliance Tools: Scale capabilities as your institution grows
  5. Train with AI Assistants: Reduce dependency on large teams for investigations

Final Thoughts: From Compliance Cost to Competitive Edge

AML compliance will always involve cost, but the institutions that treat it as a strategic capability rather than a regulatory burden are the ones that will thrive.

With smarter tools, shared intelligence, and a modular approach, Singapore’s financial ecosystem can build a new model—one where compliance is faster, cheaper, and more intelligent.

Counting the Cost: How AML Compliance is Reshaping Budgets in Singapore