Compliance Hub

JMLSG Guidance and Its Importance in the UK AML Regime

Site Logo
Tookitaki
16 Dec 2020
7 min
read

JMLSG stands for the Joint Money Laundering Steering Group. It’s a multi-disciplinary committee which was created to provide assistance in interpreting UK Money Laundering Regulations. The private-sector body regularly publishes guidance notes, known as JMLSG guidance, on the UK money laundering regulations.

The JMLSG guidance plays an important role in helping financial institutions and other key industries to ensure that they comply with the UK’s anti-money laundering and counter-terrorist financing (AML/CTF) regulations. In this article, we will discuss JMLSG, the JMLSG guidance and its role in the UK AML regime.

 

Who Are the Members of JMLSG?

JMLSG consists of members from leading UK trade associations who are part of the financial service industry. It also includes representatives from the Building Societies Association, the British Bankers’ Association, and the Association of British Insurers. The following are the current members of JMLSG, according to their official website.

  • Association for Financial Markets in Europe (AFME)
  • The Association of British Credit Unions Limited (ABCUL)
  • Association of British Insurers (ABI)
  • Association of Foreign Banks (AFB)
  • British Venture Capital Association (BVCA)
  • Building Societies Association (BSA)
  • Electronic Money Association (EMA)
  • European Venues and Intermediaries Association (EVIA)
  • Finance & Leasing Association (FLA)
  • The Investment Association (IA)
  • Loan Market Association (LMA)
  • The Personal Investment Management and Financial Advice Association (PIMFA)
  • The Investing and Savings Alliance (TISA)
  • UK Finance (UKF)

 

What Is the Aim of JMLSG?

The JMLSG aims to assist financial institutions in the UK to adopt better practices in the prevention of money laundering and terrorist financing. Its guidance notes are to clarify the country’s AML regulations and to guide financial institutions on the implementation of proper AML processes and procedures.

 

What is the JMLSG Guidance?

The JMLSG has set forth AML guidelines to help assist the financial sector. These guidelines are neither legally binding nor punishable at an offence. However, they have HM Treasury’s approval. The JMLSG guidance helps financial institutions (FIs) to develop a compliance programme with policies and procedures that are fit to the organisation’s needs.

The guidance by JMLSG determines the necessary requirements that the financial entities need in order to detect, investigate, and prevent money laundering and terrorist financing. It allows the FIs to apply the required regulations based on their personal experience, products and services, clients and transactions.

Although it’s not compulsory for FIs to follow the JMLSG guidance, the adoption, however, is a sign of having good AML compliance measures. The guidance is not over-prescriptive but provides a base from which an FI’s management can develop tailored policies and procedures that are appropriate for their business. It remains the responsibility of an FI to make its own judgement on individual cases, on a risk-based approach.

The purpose of the JMLSG guidance is to:

  • Outline the legal and regulatory framework for anti-money laundering/countering terrorist financing (AML/CTF) requirements and systems across the financial services sector
  • Interpret the requirements of the relevant law and regulations, and how they may be implemented in practice
  • Indicate good industry practice in AML/CTF procedures through a proportionate, risk-based approach
  • Assist firms in designing and implementing the systems and controls necessary to mitigate the risks of the firm being used in connection with money laundering and the financing of terrorism.

Read More: Financial Conduct Authority: Money Laundering in The UK

The Current JMLSG Guidance

The current JMLSG guidance is available in three parts:

  1. Generic guidance for the UK financial sector,
  2. Sectoral guidance
  3. Specialist guidance.

We give a quick rundown of the general guidance's content here.

 The Responsibility of Senior Management

According to the JMLSG, senior management in an FI has a responsibility to ensure that its policies, controls and procedures are appropriately designed, implemented and effectively operated.

The senior management needs to ensure that the Financial Conduct Authority makes written policies and procedures available to the FI’s employees. It is also the responsibility of management to consider any risk factors relating to clients, jurisdictions, the geographic location of the institute, transactions, products, and services, and so on.

The senior management should be engaged at every step of the decision-making processes while taking ownership of the risk-based approach. The management will be responsible in case the risk-based approach is inadequate.

Internal Controls

The JMLSG provides guidance on the internal controls that will help FIs meet their obligations in respect to the prevention of money laundering and terrorist financing.

It is recommended that FIs appoint a member of their board (or comparable management body) or senior management as the officer in charge of the firm's money laundering compliance.They also need to carry out screening of relevant employees and agents appointed by the firm, both before they are recruited, and at regular intervals during the course of their employment and establish an independent internal audit function.

The Nominated Officers/MLROs

FIs must appoint a Nominated Officer or Money Laundering Reporting Officer (MLRO) to ensure that the firm maintains compliance with the Financial Conduct Authority’s (FCA) regulatory systems.

The firm’s nominated officer will monitor the routine functions and money laundering policies. They will also give more information on any questioning related to the FCA or help in understanding the UK’s legislation better.

A Risk-based Approach

The risk-based approach is endorsed by the FATF recommendations 1 and 10 and the Basel Paper among others.

The JMLSG suggests the following actions to ensure a risk-based approach.

    • Carry out a formal, and regular, money laundering/terrorist financing risk assessment, including market changes, and changes in products, customers and the wider environment
    • Ensure internal policies, controls and procedures, including staff awareness, adequately reflect the risk assessment
    • Ensure customer identification and acceptance procedures reflect the risk characteristics of customers
    • Ensure arrangements for monitoring systems and controls are robust, and reflect the risk characteristics of customers

Customer Due Diligence

The group lists out the following Customer Due Diligence (CDD) measures for FIs in its guidance.

    • Must carry out prescribed CDD measures for all customers not covered by exemptions
    • Must have systems to deal with identification issues in relation to those who cannot produce the standard evidence
    • Must take a risk-based approach when applying enhanced due diligence to take account of the greater potential for money laundering in higher-risk cases, specifically with respect of PEPs and correspondent relationships
    • Some persons/entities must not be dealt with
    • Must have specific policies about the financially (and socially) excluded
    • If satisfactory evidence of identity is not obtained, the business relationship must not proceed further
    • Must have some system for keeping customer information up to date

Suspicious Activities, Reporting and Data Protection

The JMLSG suggests the following actions:

    • Enquiries made in respect to disclosures must be documented
    • The reasons why a Suspicious Activity Report (SAR) was, or was not, submitted should be recorded
    • Any communications made with or received from the authorities, including the NCA, in relation to a SAR should be maintained on file
    • In cases where advance notice of a transaction or of arrangements is given, the need for prior consent before it is allowed to proceed should be considered

Staff Awareness, Training and Alertness

The JMLSG suggests the following actions:

    • Provide appropriate training to make relevant employees aware of money laundering and terrorist financing issues, including how these crimes operate and how they might take place through the firm
    • Ensure that relevant employees are provided with information on, and understand, the legal position of the firm and of individual members of staff, and of changes to these legal positions
    • Consider providing relevant employees with case studies and examples related to the firm’s business
    • Train relevant employees in how to operate a risk-based approach to AML/CTF

Record Keeping

According to the JMLSG, FIs have the following core obligations:

    • Firms must retain copies of, or references to, the evidence they obtained of a customer’s identity and details of customer transactions for five years after the end of the customer relationship or five years after the completion of an occasional transaction
    • Firms should retain details of actions taken in respect of internal and external suspicion reports and details of information considered by the nominated officer in respect of an internal report where no external report is made
    • Firms must delete any personal data relating to CDD and client transactions in accordance with Regulation 40

 

How Can Tookitaki Help Financial Institutions in the UK?

As a fast-growing Regtech company, Tookitaki has developed an end-to-end AML compliance platform called the Anti-Money Laundering Suite (AMLS). It offers multiple solutions catering to the core AML activities such as transaction monitoring, name screening, transaction screening and customer risk scoring. Powered by advanced machine learning, AMLS addresses the market needs and provides an effective and scalable AML compliance solution.

To learn more about our AML solution and its unique features that help financial institutions to enhance their risk-based AML compliance programmes, book a meeting with one of our experts today. 

By submitting the form, you agree that your personal data will be processed to provide the requested content (and for the purposes you agreed to above) in accordance with the Privacy Notice

success icon

We’ve received your details and our team will be in touch shortly.

In the meantime, explore how Tookitaki is transforming financial crime prevention.
Learn More About Us
Oops! Something went wrong while submitting the form.

Ready to Streamline Your Anti-Financial Crime Compliance?

Our Thought Leadership Guides

Blogs
06 Nov 2025
6 min
read

AML Software Providers in Singapore: Who’s Leading the Charge in 2025?

Choosing the right AML software provider could be the difference between catching criminals — or getting caught off guard.

In Singapore’s highly regulated financial landscape, where MAS scrutiny meets cross-border complexity, financial institutions can’t afford to work with outdated or underpowered AML systems. The stakes are high: scam syndicates are growing more sophisticated, regulatory demands are tightening, and operational costs are ballooning.

In this blog, we break down what makes an AML software provider truly industry-leading, explore how Singaporean institutions are choosing their compliance partners, and spotlight the key players setting the standard in 2025.

Talk to an Expert

The Rise of AML Software in Singapore

Singapore is one of Asia’s most advanced financial hubs, which also makes it a prime target for sophisticated money laundering networks. In recent years, local and international banks, digital payment firms, and fintechs have faced mounting pressure to modernise their AML systems — and many are turning to specialist providers.

This demand has created a competitive AML software market. Providers are now racing to deliver not just compliance, but intelligence — helping institutions detect emerging threats faster and act with confidence.

What Do AML Software Providers Offer?

AML software providers build and maintain the platforms that automate and support critical compliance activities across the financial crime lifecycle.

Key functions typically include:

  • Customer Due Diligence (CDD): Onboarding risk assessments and periodic reviews
  • Sanctions & PEP Screening: Name matching against global watchlists
  • Transaction Monitoring: Rule- and typology-based detection of suspicious behaviour
  • Case Management: Alert investigation workflows and documentation
  • Suspicious Transaction Reporting (STR): Filing STRs to regulators like STRO
  • Audit & Governance Tools: Ensuring traceability and internal oversight

Modern AML providers now integrate AI, machine learning, and even Generative AI agents into these functions to improve speed and accuracy.

Why AML Software Provider Choice Matters

Not all platforms are created equal — and choosing the wrong one can lead to:

  • High false positives, wasting team hours
  • Missed red flags and regulatory scrutiny
  • Long onboarding timelines
  • Manual, error-prone investigation processes
  • Inability to meet MAS audit requirements

A good AML software provider doesn’t just sell you a tool — they deliver intelligence, explainability, and localised support.

Key Features to Look for in AML Software Providers

Here’s what compliance leaders in Singapore should prioritise when evaluating providers:

1. MAS Alignment and Local Compliance Support

Your AML provider should offer:

  • Pre-configured workflows aligned with MAS guidelines
  • GoAML-compatible STR formatting
  • Automated recordkeeping for audit readiness
  • Updates on local typologies, scams, and regulatory notices

2. AI-Powered Detection and Triage

The best providers go beyond rules-based alerts. They use AI to:

  • Reduce false positives by learning from past investigations
  • Prioritise alerts based on actual risk exposure
  • Surface hidden patterns like mule networks or trade-based layering
  • Simulate new scenarios before deployment

3. Typology-Based Monitoring

Leading platforms incorporate community-driven or expert-validated typologies, such as:

  • Romance scams
  • Deepfake impersonation
  • QR code money laundering
  • Synthetic identity fraud

This is especially important for Singapore, where scam methods evolve quickly and exploit local platforms.

4. Smart Case Management

A modern case management interface should:

  • Link alerts to customer profiles, transactions, and historical data
  • Offer AI-generated summaries and investigation paths
  • Track resolution outcomes and investigator notes
  • Facilitate quick escalation or STR submission

5. Scalability and Modularity

Whether you're a small digital bank or a regional powerhouse, your provider should offer:

  • Cloud-native deployment options
  • Modular features so you pay only for what you use
  • Flexible integration with existing tech stack (core banking, CRM, payments)
  • Local support and language customisation
ChatGPT Image Nov 5, 2025, 05_48_20 PM

The AML Software Provider Landscape in Singapore

Here’s a breakdown of the types of providers operating in Singapore and what sets each category apart.

1. Regional Powerhouses

Examples: Tookitaki, Fintelekt, CRIF

Regional players focus on Asia-Pacific challenges and offer more agile, localised services.

Pros:

  • Strong understanding of MAS expectations
  • Lower deployment overheads
  • Faster updates on emerging typologies (e.g., pig butchering scams, RTP fraud)

Cons:

  • May lack breadth of features compared to global providers
  • Integration options vary

2. Specialist AI Providers

Examples: Quantexa, ThetaRay, SymphonyAI

These players emphasise graph analytics, behavioural profiling, or explainable AI to augment existing AML systems.

Pros:

  • High innovation
  • Complementary to traditional systems
  • Can reduce alert fatigue

Cons:

  • Often not end-to-end AML solutions
  • Need to be integrated with core systems

3. Established Multinational Providers

These are long-standing players with large-scale deployments across global financial institutions. They offer full-suite solutions with legacy trust and broad compliance coverage.

Examples: Oracle Financial Services, NICE Actimize, FICO

Pros:

  • End-to-end functionality with proven scalability
  • Global regulatory mapping and multi-jurisdictional support
  • Strong brand recognition with traditional banks

Cons:

  • Complex integration processes and longer deployment times
  • Less agility in adapting to fast-evolving local typologies
  • Higher cost of ownership for mid-sized or digital-first institutions

Spotlight: Tookitaki’s FinCense Platform

Tookitaki, a Singapore-headquartered RegTech, is emerging as a top AML software provider across Asia. Its platform, FinCense, is purpose-built for the region’s financial crime challenges.

What Makes FinCense Stand Out?

  • AI Copilot (FinMate): Assists analysts with contextual guidance, investigation tips, and STR narration
  • Typology Repository: Constantly updated with real-world scenarios from the AFC Ecosystem
  • Simulation Mode: Lets teams test new detection rules before going live
  • Federated Learning: Enables banks to learn from each other without sharing sensitive data
  • Rapid Deployment: Designed for modular, cloud-based rollout in weeks — not months

Singaporean banks using FinCense report:

  • Up to 72% reduction in false positives
  • 3.5× improvement in investigation speed
  • 99% screening accuracy

These performance metrics help institutions meet compliance demands while optimising team efficiency.

Questions to Ask Before Selecting a Provider

Choosing an AML software provider is a long-term decision. Here are five key questions to ask during evaluation:

  1. How does your platform handle Singapore-specific risks and regulations?
  2. Can your system scale as our business grows across Asia?
  3. What AI models are in place, and how do you ensure explainability?
  4. Can we simulate rule changes before going live?
  5. Do you offer local customer support and scenario updates?

Common Mistakes to Avoid

Even experienced teams sometimes make the wrong call. Watch out for:

  • Over-indexing on legacy reputation: Just because a vendor is big doesn’t mean they’re right for you.
  • Ignoring AI explainability: MAS expects defensible logic behind alerts.
  • Underestimating integration complexity: Choose a system that fits into your ecosystem, not one that takes a year to configure.
  • Failing to look at outcomes: Ask about real metrics like false positive reduction and STR turnaround times.

Emerging Trends Among AML Providers in Singapore

1. Rise of Agentic AI

More providers are embedding AI agents that guide analysts through the investigation process, not just surface alerts.

2. Shared Intelligence Networks

Communities like the AFC Ecosystem are allowing AML systems to learn from regional patterns without compromising data.

3. End-to-End Automation

The STR filing journey — from detection to report generation — is being fully automated.

4. Embedded Compliance in Fintech

As fintechs mature, they need enterprise-grade AML that doesn’t slow down onboarding or user experience.

Conclusion: The Right Provider Is a Strategic Advantage

In 2025, AML compliance in Singapore isn’t just about meeting minimum requirements — it’s about staying one step ahead of risk. Your choice of AML software provider can determine whether your institution responds to threats reactively or proactively.

Banks, fintechs, and payments providers must look for partners who bring innovation, agility, and local intelligence to the table.

Providers like Tookitaki — with FinCense and its Agentic AI engine — are proving that compliance can be a source of confidence, not complexity.

If you're re-evaluating your AML tech stack this year, look beyond features and pricing. Look for alignment with your strategy, your market, and the future of compliance.

AML Software Providers in Singapore: Who’s Leading the Charge in 2025?
Blogs
06 Nov 2025
6 min
read

Ethical AI in AML: Building Transparency and Accountability in Australian Compliance

As artificial intelligence reshapes financial compliance, Australian banks face a new challenge — ensuring their AML systems are not only powerful but also ethical, transparent, and accountable.

Introduction

Artificial intelligence (AI) has become the engine of modern Anti-Money Laundering (AML) systems. From transaction monitoring to risk scoring, AI is accelerating the fight against financial crime across Australia’s banking sector.

Yet with great power comes great responsibility.

As regulators such as AUSTRAC and APRA heighten scrutiny of AI-led decision-making, banks are being asked not just how their models work, but whether they work fairly and responsibly.

Ethical AI is no longer a niche topic. It is now a pillar of compliance integrity — the foundation on which regulators, customers, and investors measure trust.

Talk to an Expert

What Is Ethical AI in AML?

Ethical AI in AML refers to the design, deployment, and governance of AI models that are transparent, accountable, and aligned with human values.

In practical terms, it means ensuring that AI:

  • Detects crime without discriminating unfairly.
  • Makes explainable, auditable decisions.
  • Protects sensitive financial data.
  • Supports, rather than replaces, human oversight.

Ethical AI ensures that technology enhances compliance — not complicates it.

Why Ethical AI Matters in Australian Compliance

1. Regulatory Accountability

AUSTRAC’s AML/CTF Rules require systems to be auditable, explainable, and verifiable. As AI automates decisions, banks must prove that these systems act consistently and fairly.

2. Customer Trust

Customers expect fairness and transparency in every interaction. Unexplained AI decisions, particularly around transaction monitoring or account flags, can erode trust.

3. ESG and Corporate Responsibility

Governance is a key pillar of ESG frameworks. Ethical AI demonstrates that a bank’s technology practices align with its social and governance commitments.

4. AI Governance Integration

With APRA CPS 230 reinforcing accountability and resilience, governance and ethics are becoming inseparable from operational risk management.

5. International Influence

Global regulators are introducing AI ethics frameworks, including the EU’s AI Act and Singapore’s AI Verify initiative — both shaping Australian institutions’ approach to responsible innovation.

The Risks of Unethical AI in AML

Without proper ethical controls, AI in compliance can introduce new risks:

  • Bias: Models may unfairly target customers based on geography, demographics, or transaction behaviour.
  • Opacity: “Black-box” systems make decisions that even developers cannot explain.
  • Over-Reliance: Institutions may blindly trust automated outputs without human validation.
  • Data Privacy Breaches: Weak governance can expose sensitive customer data.
  • Regulatory Breach: Lack of transparency can trigger penalties or enforcement actions.

The integrity of compliance depends on the integrity of the algorithms behind it.

The Four Pillars of Ethical AI in AML

1. Transparency

AI systems must be interpretable. Compliance teams should be able to understand how an alert was generated, what data influenced it, and how risk was scored.

2. Fairness

AI must operate without bias. This requires continuous testing, retraining, and validation against balanced datasets.

3. Accountability

Every AI-driven decision should have a clear chain of responsibility — from model design to investigator review.

4. Privacy

Ethical AI protects sensitive financial data through encryption, anonymisation, and strict access control, aligning with Australia’s Privacy Act 1988.

These four pillars together define what AUSTRAC calls “trustworthy technology in compliance.”

Building Ethical AI: A Framework for Australian Banks

Step 1: Establish AI Governance

Define principles, policies, and oversight structures that ensure responsible model use. Include representation from compliance, data science, legal, and risk teams.

Step 2: Design for Explainability

Choose interpretable algorithms and implement Explainable AI (XAI) layers that reveal the logic behind each outcome.

Step 3: Ensure Human Oversight

AI should support investigators, not replace them. Define clear boundaries for when human judgment is required.

Step 4: Audit and Validate Continuously

Regularly test models for drift, bias, and accuracy. Document findings and corrective actions for regulator review.

Step 5: Secure the Data

Use privacy-preserving technologies and maintain strong audit trails for every data access event.

Ethical AI is not a one-time achievement — it is a continuous process of validation and accountability.

Case Example: Regional Australia Bank

Regional Australia Bank, a community-owned financial institution, demonstrates how responsible innovation can coexist with compliance excellence.

By embedding explainable, auditable AI into its monitoring framework, the bank ensures that technology strengthens integrity rather than obscuring it. The result: faster decisions, fewer false positives, and complete transparency for both regulators and customers.

This balance between automation and ethics represents the future of sustainable AML compliance in Australia.

Spotlight: Tookitaki’s FinCense — Ethics Engineered into AI

FinCense, Tookitaki’s end-to-end compliance platform, was built on the principle that AI must be explainable, fair, and accountable.

  • Explainable AI (XAI): Every decision can be traced to its source data and logic.
  • Bias Monitoring: Continuous audits ensure models perform equitably across segments.
  • Privacy by Design: Federated architecture ensures sensitive customer data never leaves local environments.
  • AI Governance Dashboards: Enable real-time oversight of model accuracy, drift, and integrity.
  • Agentic AI Copilot (FinMate): Supports investigators responsibly, surfacing contextual insights while maintaining full human control.
  • Federated Learning: Promotes collective intelligence without compromising data confidentiality.

FinCense transforms AI from a compliance tool into a trusted partner — one that operates transparently, fairly, and ethically across the AML lifecycle.

How Ethical AI Strengthens the Trust Layer

Ethical AI is the foundation of Tookitaki’s Trust Layer — the framework that unites responsible innovation, data governance, and collaboration to protect financial integrity.

  • Responsible Innovation: AI models that learn without bias.
  • Data Governance: Transparent, auditable data pipelines.
  • Collaborative Intelligence: Shared learning across institutions through anonymised networks.

By aligning AI development with ethical principles, Tookitaki helps banks build systems that are not just compliant but trustworthy.

AUSTRAC and APRA: Encouraging Responsible AI

Both AUSTRAC and APRA recognise the growing influence of AI in compliance and are evolving their supervisory approaches accordingly.

AUSTRAC

Encourages innovation through RegTech partnerships while insisting on auditability and explainability in automated reporting and monitoring systems.

APRA

Under CPS 230, highlights governance, accountability, and risk management in all technology-driven processes — including AI.

Together, these frameworks reinforce that ethical AI is now a regulatory expectation, not a future ideal.

Global Standards in Ethical AI

Australian banks can also draw guidance from international best practices:

  • EU AI Act (2024): Classifies AML systems as “high-risk” and mandates strict transparency.
  • Singapore’s AI Verify: Provides an operational test framework for ethical AI, including fairness, robustness, and explainability metrics.
  • OECD Principles on AI: Promote human-centric AI that respects privacy and accountability.

These frameworks share one core message: technology must serve humanity, not replace it.

ChatGPT Image Nov 5, 2025, 05_26_03 PM

Challenges to Implementing Ethical AI

  • Black-Box Models: Complex neural networks remain difficult to interpret.
  • Bias in Legacy Data: Historical data can embed outdated or discriminatory assumptions.
  • Resource Gaps: Ethical oversight requires specialised skill sets and continuous monitoring.
  • Vendor Transparency: Banks depend on external providers to disclose model logic and validation standards.
  • Balancing Speed and Caution: The drive for efficiency must not override fairness and clarity.

Institutions that overcome these challenges set themselves apart as pioneers of responsible innovation.

The Human Element: Ethics Beyond Code

Even the most transparent algorithm needs ethical humans behind it.

  • Leadership Accountability: Boards and compliance heads must champion responsible AI as a strategic priority.
  • Cross-Functional Collaboration: Data scientists and compliance officers should work together to align models with regulatory intent.
  • Training and Awareness: Teams must understand both the potential and the pitfalls of AI in compliance.

Ethical AI starts with ethical culture.

A Roadmap for Australian Banks

  1. Define Ethical Principles: Create an internal code for AI use aligned with AUSTRAC and APRA expectations.
  2. Set Up an AI Ethics Committee: Oversee model approvals, audits, and accountability frameworks.
  3. Adopt Explainable AI Solutions: Ensure all outputs can be justified to regulators and customers.
  4. Conduct Bias Testing: Regularly evaluate models across demographic and behavioural variables.
  5. Enhance Transparency: Publish summaries of ethical AI policies and governance practices.
  6. Collaborate with Regulators: Share learnings and seek feedback to align with evolving standards.
  7. Integrate with ESG Reporting: Link AI ethics to governance and sustainability disclosures.

This roadmap turns ethical intent into measurable action.

The Future of Ethical AI in AML

  1. AI Auditors: Independent verification of model ethics and compliance.
  2. Ethics-as-a-Service: Cloud-based ethical governance frameworks for financial institutions.
  3. Federated Oversight Networks: Cross-bank collaboration to detect and eliminate model bias collectively.
  4. Agentic AI for Governance: AI copilots monitoring other AI systems for fairness and drift.
  5. Global Ethical AI Certification: Industry-wide trust seals verifying responsible technology.

The future of compliance will not only be intelligent but also principled.

Conclusion

In the race to modernise AML systems, speed and scale matter — but ethics matter more.

For Australian banks, the ability to combine automation with accountability will determine their long-term credibility with regulators, customers, and the public.

Regional Australia Bank has shown that even mid-tier institutions can lead with transparency and responsible innovation.

With Tookitaki’s FinCense and its built-in governance, explainability, and federated learning, institutions can achieve the perfect balance between intelligence and integrity.

Pro tip: In compliance, intelligence earns efficiency — but ethics earns trust.

Ethical AI in AML: Building Transparency and Accountability in Australian Compliance
Blogs
05 Nov 2025
6 min
read

From Rules to Intelligence: How AML AI Solutions Are Transforming Compliance in Malaysia

In a world of instant payments and cross-border crime, AML AI solutions are changing how financial institutions fight financial crime.

Malaysia’s Financial System at a Crossroads

The way financial institutions detect and prevent money laundering is evolving at record speed. Malaysia, a thriving hub for fintech innovation and cross-border trade, is facing a rising tide of financial crime.

Money mule networks, online investment scams, trade-based laundering, and account takeover attacks are no longer isolated threats — they are interconnected, fast-moving, and increasingly automated.

Bank Negara Malaysia (BNM), together with global partners under the Financial Action Task Force (FATF) framework, has intensified its expectations for compliance technology. Institutions must now demonstrate real-time monitoring, adaptive learning, and transparent decision-making.

Legacy rule-based systems, once sufficient, can no longer keep pace. The future of compliance lies in the rise of AML AI solutions — intelligent systems that think, learn, and explain.

Talk to an Expert

The Shift from Rule-Based to Intelligence-Driven AML

Traditional AML systems operate like fixed security checkpoints. They flag transactions that meet preset criteria — for instance, those above a threshold or involving specific countries.

While useful, these systems struggle in the digital age. Financial crime is no longer linear or predictable. Criminals exploit instant payment rails, digital wallets, and cross-border remittance corridors to layer funds in seconds.

This is where AI-powered AML systems are rewriting the rules. Unlike static frameworks, AI systems continuously learn from data, recognise patterns humans might miss, and adapt to new laundering techniques as they emerge.

The result is not just faster detection, but smarter, context-aware compliance that balances risk sensitivity with operational efficiency.

What Is an AML AI Solution?

An AML AI solution is an artificial intelligence-driven system designed to detect, investigate, and prevent financial crime more effectively than rule-based tools. It combines:

  • Machine Learning (ML): Models that learn from data to predict suspicious patterns.
  • Natural Language Processing (NLP): Tools that generate readable case narratives and assist investigations.
  • Automation: Streamlined workflows that reduce manual work.
  • Explainability: Transparent reasoning behind every alert and decision.

These elements come together to form a compliance ecosystem that is proactive, auditable, and aligned with evolving regulatory demands.

Why AI Matters in Malaysia’s AML Landscape

Malaysia’s financial sector is undergoing a transformation. Digital banking licenses, e-wallets, and QR-based payments are creating a hyperconnected ecosystem. But with speed comes exposure.

1. Rise of Instant Payments and QR Adoption

DuitNow QR has made payments instantaneous. While this convenience benefits consumers, it also gives criminals new ways to move illicit funds faster than legacy systems can respond.

2. FATF and BNM Pressure

Malaysia’s commitment to meeting FATF standards requires institutions to prove that their AML systems are risk-based, data-driven, and transparent.

3. ASEAN Connectivity

Cross-border payment corridors between Malaysia, Thailand, Indonesia, and Singapore increase both opportunity and risk, making regional collaboration vital.

4. Escalating Financial Crime Complexity

Money laundering typologies now combine fraud, mule activity, and trade manipulation in multi-layered schemes.

AI addresses these challenges by enabling detection models that can analyse behaviour, context, and relationships simultaneously.

How AML AI Solutions Work

At the heart of every AML AI solution is a continuous learning cycle that fuses data, intelligence, and automation.

1. Data Integration

The system collects data from core banking systems, payment gateways, and customer records, creating a unified view of transactions.

2. Data Normalisation and Feature Engineering

AI models structure and enrich data, identifying key attributes like transaction velocity, peer connections, and customer risk profiles.

3. Pattern Recognition and Anomaly Detection

Machine learning algorithms identify unusual patterns or deviations from normal customer behaviour.

4. Risk Scoring

Each transaction is assigned a dynamic risk score based on customer type, product, geography, and behaviour.

5. Alert Generation and Narration

When activity exceeds a risk threshold, an alert is created. AI summarises the findings in natural language for human review.

6. Continuous Learning

Models evolve as investigators provide feedback, improving accuracy and reducing false positives over time.

This loop creates an intelligent, self-improving system that adapts as crime evolves.

Benefits of AML AI Solutions for Malaysian Institutions

Financial institutions that adopt AI-driven AML solutions experience transformative benefits.

  • Faster Detection: Real-time analysis enables instant identification of suspicious transactions.
  • Reduced False Positives: Models learn context, reducing unnecessary alerts that overwhelm teams.
  • Improved Accuracy: AI uncovers patterns invisible to static rule sets.
  • Lower Compliance Costs: Automation reduces manual workloads and investigation time.
  • Regulator Confidence: Explainable AI ensures all alerts are traceable and auditable.
  • Enhanced Customer Experience: Fewer false flags mean fewer legitimate customers disrupted by compliance processes.

Tookitaki’s FinCense: Malaysia’s Leading AML AI Solution

At the forefront of this AI transformation is Tookitaki’s FinCense, a next-generation AML AI solution trusted by banks and fintechs across Asia-Pacific.

FinCense represents a shift from traditional compliance to collaborative intelligence, where AI and human expertise work together to prevent financial crime. It is built around three pillars — Agentic AI, Federated Learning, and Explainable Intelligence — that make it uniquely effective in Malaysia’s financial landscape.

Agentic AI Workflows

FinCense employs Agentic AI, a framework where intelligent AI agents automate end-to-end compliance workflows.

These agents triage alerts, prioritise high-risk cases, and generate human-readable investigation narratives. By guiding analysts toward actionable insights, FinCense cuts investigation time by more than 50 percent while improving accuracy and consistency.

Federated Learning through the AFC Ecosystem

FinCense connects seamlessly with the Anti-Financial Crime (AFC) Ecosystem, a collaborative intelligence network of over 200 financial institutions.

Through federated learning, FinCense continuously learns from typologies and scenarios contributed by its community — without compromising data privacy.

For Malaysia, this means early visibility into typologies detected in neighbouring countries, helping banks stay ahead of emerging regional threats.

Explainable AI for Regulatory Assurance

FinCense’s explainable AI ensures every decision is transparent. Each flagged transaction includes a rationale detailing why it was considered risky.

This transparency aligns perfectly with BNM’s expectations for auditability and FATF’s emphasis on accountability in AI adoption.

Unified AML and Fraud Capabilities

FinCense integrates AML, fraud detection, and screening into one platform. By removing silos, it creates a holistic view of financial crime risk, enabling institutions to identify overlapping typologies such as fraud proceeds laundered through mule accounts.

Localisation for ASEAN

FinCense incorporates regional typologies — QR-based laundering, cross-border remittance layering, shell company misuse, and mule recruitment — making it highly accurate for Malaysia’s financial environment.

Real-World Example: Detecting a Complex Mule Network

Consider a situation where criminals use a network of gig workers to move illicit funds from an online scam. Each mule receives small sums that appear legitimate, but collectively these transactions form a sophisticated laundering operation.

A rule-based system would flag few or none of these transfers because each transaction falls below set thresholds.

With FinCense’s AML AI engine:

  1. The model detects unusual transaction velocity and cross-account connections.
  2. Federated intelligence identifies similarities to previously observed mule typologies in Singapore and the Philippines.
  3. The Agentic AI workflow auto-generates a case narrative explaining the anomaly and its risk factors.
  4. The compliance team acts before the funds exit the network.

The outcome is faster detection, prevention of loss, and regulatory-grade documentation of the decision-making process.

ChatGPT Image Nov 5, 2025, 03_08_20 PM

Implementing an AML AI Solution: Step-by-Step

Deploying AI in AML requires thoughtful integration, but the payoff is transformative.

Step 1: Assess AML Risks and Objectives

Identify primary threats — from mule networks to trade-based laundering — and align system objectives with BNM’s AML/CFT expectations.

Step 2: Prepare and Unify Data

Integrate data from transaction monitoring, onboarding, and screening systems to create a single source of truth.

Step 3: Deploy Machine Learning Models

Use supervised learning for known typologies and unsupervised models to detect unknown anomalies.

Step 4: Build Explainability

Ensure that every AI decision is transparent and auditable. This builds regulator confidence and internal trust.

Step 5: Continuously Optimise

Use feedback loops to refine detection models and keep them aligned with emerging typologies.

Key Features to Look for in an AML AI Solution

When evaluating AML AI solutions, institutions should prioritise several critical attributes.

The first is intelligence and adaptability. Choose a system that evolves with new data and identifies unseen risks without constant rule updates.

Second, ensure transparency and explainability. Every alert should have a clear rationale that satisfies regulatory expectations.

Third, scalability is essential. The platform must handle millions of transactions efficiently without compromising performance.

Fourth, seek integration and convergence. The ability to combine AML and fraud detection in one system delivers a more complete risk picture.

Finally, prioritise collaborative intelligence. Platforms like FinCense, which learn from shared regional data through federated models, offer a significant advantage against transnational crime.

The Future of AI in AML

The evolution of AML AI solutions will continue to reshape compliance across Malaysia and beyond.

Responsible AI and Ethics

Regulators worldwide, including BNM, are focusing on AI governance and fairness. Explainable models and ethical frameworks will become mandatory.

Collaborative Defence

Institutions will increasingly rely on collective intelligence networks to detect cross-border laundering and fraud schemes.

Human-AI Collaboration

Rather than replacing human judgment, AI will enhance it. The next generation of AML officers will work alongside AI copilots to make faster, more accurate decisions.

Integration with Open Banking and Real-Time Payments

As Malaysia embraces open banking, real-time data sharing will empower AML AI systems to build deeper, faster insights into customer activity.

Conclusion

The future of financial crime prevention lies in intelligence, not intuition. As Malaysia’s digital economy grows, financial institutions must equip themselves with technology that learns, explains, and evolves.

AML AI solutions represent this evolution — tools that go beyond compliance to protect trust and integrity across the financial system.

Among them, Tookitaki’s FinCense stands as a benchmark for excellence. It combines Agentic AI, federated intelligence, and explainable technology to create a compliance platform that is transparent, adaptive, and regionally relevant.

For Malaysia’s banks and fintechs, the message is clear: staying ahead of financial crime requires more than rules — it requires intelligence.

And FinCense is the AML AI solution built for that future.

From Rules to Intelligence: How AML AI Solutions Are Transforming Compliance in Malaysia