Compliance Hub

The Financial Action Task Force (FATF)

Site Logo
Tookitaki
14 Oct 2020
5 min
read

Financial Action Task Force (FATF) is an independent inter-governmental body that helps develop and promote policies to protect the global financial system against money laundering, terrorist financing, and other facets of corruption. FATF was founded in 1989, comprises 39 member countries and its headquarters is placed in Paris, France.

Introduction to FATF

The rise in international trade and the global economy has resulted in an increase in financial crimes such as money laundering. Comprising over 39 countries, FATF has a ministerial mandate to establish international standards for combating these financial crimes. Over 180 jurisdictions have joined the FATF and committed at the ministerial level to implementing the Financial Crime Task Force Standards and having their anti‐money laundering (AML) systems assessed.

Financial Action Task Force (FATF) Definition 

FATF stands for Financial Action Task Force. It was established in July 1989 by a Group of Seven (G-7) Summit in Paris, initially to examine and develop measures to combat money laundering and the threat it posed to the world financial system. At that time, the main responsibilities of the Financial Action Task Force (FATF) were to analyze and determine what the most common tactics were for money laundering, to reflect on what was already being done in order to tackle financial crime and make goals for what could be accomplished for the future.

After completing their research, FATF proceeded to generate 40 Financial Action Task Force Recommendations that were meant to guide its members through the processes of regulating the financial sector and curbing corruption. The FATF Standards, which comprise the Financial Action Task Force Recommendations themselves and their interpretive notes, together with the applicable definitions in the glossary of the regulations ensure a coordinated global prevention towards organized crime, corruption, and terrorism. It helps the authorities to go after the money made by criminals that comes from dealing with illegal drugs, human trafficking, and other crimes. Along with this idea, the FATF also works to stop funding for weapons of mass destruction.

They are aiming to strengthen FATF Standards to address new risks, such as the regulation of virtual assets, which have spread as cryptocurrencies gain popularity. FATF monitors every country to ensure that the FATF Standards are implemented fully and effectively and holds the countries accountable which do not comply.

How does FATF work? 

Financial Action Task Force (FATF) works in the following ways:

  1. It sets International Recommendations to combat money laundering and terrorist financing.
  2. It assesses and monitors compliance with the FATF Recommendations.
  3. It conducts typologies, and studies of money laundering and terrorist financing methods, trends, and techniques.
  4. It responds to new and emerging threats, such as proliferation financing.

Financial Action Task Force on Money Laundering 

Money laundering is a century-long crime, which continues to pose a significant threat to governments, financial institutions, and businesses even today. Thus, credit unions, financial institutions, banks, and corporations are required to set in place an Anti-Money Laundering Compliance Program. Another way to put an emphasis on regulatory monitoring, reporting, and compliance is to benefit the finance industry, businesses can even choose RegTech. RegTech’s objective is to enhance transparency as well as consistency and to standardize regulatory processes. Whereas, an AML Compliance Programme can help businesses keep a track of transactions and flag any illegal financial activities to the concerned authorities.

The FATF has prepared a Guidance and Best Practices, which is a comprehensive set of guidelines and best practices to assist jurisdictions in their implementation of the Financial Action Task Force Recommendations. It is to provide support to countries and their financial institutions in designing Anti-Money Laundering(AML) measures that meet the national goal of financial inclusion.

Applying an overly cautious approach to AML safeguards may have the unintended consequence of excluding legitimate businesses and consumers from the financial system.

The Financial Action Task Force’s Guidance paper focuses on ensuring that AML controls do not inhibit access to financially excluded and underserved groups. This may include low-income rural sectors and undocumented groups. The paper extensively explores the initiatives to address financial inclusion taken in developing countries, since that is where the challenge is the greatest.

The Guidance paper also reviews the different steps of the AML process, be it Customer Due Diligence(CDD), record-keeping requirements, reporting of suspicious transactions, use of agents, and internal controls. For each of these processes, it presents how the Financial Action Task Force (FATF) Standards can be read and interpreted to support financial inclusion.

FATF’s Recommendations

The Financial Action Task Force Recommendations are internationally endorsed global standards for implementing effective AML measures. They help to increase the transparency of the financial system, making it easier to detect criminal activity and give countries the capacity to successfully take action against money laundering and terrorist financiers.

In order to successfully implement the FATF Recommendations, every country must:

  • Criminalize money laundering and terrorist financing by properly training law enforcement and prosecutorial authorities, and equip them with sufficient powers and resources.
  • They should deprive criminals of their criminal proceeds and resources needed to finance their illicit activities by implementing effective mechanisms to freeze, seize, and confiscate criminal assets.
  • Countries should make sure that the required range of people and entities in both financial and non-financial sectors implement the AML preventative measures, such as:

Customer due diligence: This helps prevent criminals from operating anonymously or under false identities. This happens by accurately identifying customers and knowing enough about their businesses to be able to differentiate between legitimate and illegal activity.

Record keeping: To keep accurate customer identification and transaction records that can be promptly accessed by the authorities and enable customer transactions to be traced.

Suspicious transaction reporting: To monitor customer relationships and promptly report any suspicious transactions to the financial intelligence unit for analysis and possible dissemination to the law enforcement authorities.

  • Implement supervision mechanisms, including powers to sanction financial institutions and other businesses with AML requirements.
  • Prevent legal people and arrangements from being abused by criminals. This is possible when the appropriate authorities have timely access to the current information concerning the ownership and control of legal enforcements and arrangements.
  • Implement mechanisms for effective cooperation with countries in a timely manner when investigating and prosecuting money laundering and terrorist financing. This should also take place amongst domestic authorities (including law enforcement, prosecutorial and supervisory authorities, the financial intelligence unit, and policymakers).

FATF and Terrorist Financing

During the early 2000s, and particularly after the 9/11 terrorist attacks, World Governments grew cautious of the funding of terrorism, as well as other types of financial crime. These growing concerns caused the Financial Action Task Force to alter its mission and update its Financial Action Task Force Recommendations. A complete revision of the Guidance and Standards was made. With regard to terrorist financing, the Financial Action Task Force (FATF) compiled extensive research on how the terrorists got their funding, where the money came from, and what tactics were used to avoid detection. The FATF then found different ways to prevent these methods and prevent the terrorist organizations from getting more money. A recently released document provides detailed information on wire transfers, weapons of mass destruction, and other forms of corruption that can allow terrorists to gain financing. This document is available on their official website.

FATF’s Member Nations

According to the official website, there are 39 member nations of the Financial Action Task Force (FATF), representing most of the financial centres around the world. These nations are:

Argentina, Australia, Austria, Belgium, Brazil, Canada, China, Denmark, European Commission, Finland, France, Germany, Greece, Gulf Cooperation Council, Hong Kong, China, Iceland, India, Ireland, Israel, Italy, Japan, South Korea, Luxembourg, Malaysia, Mexico, Netherlands, New Zealand, Norway, Portugal, Russian Federation, Saudi Arabia, Singapore, South Africa, Spain, Sweden, Switzerland, Turkey, United Kingdom, United States.

There is currently only one FATF observer nation, which is Indonesia.

By submitting the form, you agree that your personal data will be processed to provide the requested content (and for the purposes you agreed to above) in accordance with the Privacy Notice

success icon

We’ve received your details and our team will be in touch shortly.

In the meantime, explore how Tookitaki is transforming financial crime prevention.
Learn More About Us
Oops! Something went wrong while submitting the form.

Ready to Streamline Your Anti-Financial Crime Compliance?

Our Thought Leadership Guides

Blogs
18 Aug 2025
4 min
read

Top AML Software Vendors in Australia: What to Look For in 2025

With AUSTRAC raising the bar, choosing the right AML software vendor has never been more critical for Australian institutions.

As money laundering risks intensify and AUSTRAC tightens its enforcement grip, financial institutions across Australia are rethinking their compliance technology. But with so many AML software vendors in the market, how do you know which one truly delivers on detection, efficiency, and regulatory alignment? Choosing wisely isn’t just about avoiding penalties — it’s about building trust, cutting compliance costs, and staying one step ahead of criminals.

Talk to an Expert

Why Vendor Choice Matters More Than Ever in Australia

1. AUSTRAC’s No-Nonsense Approach

Record-breaking penalties against banks and casinos highlight the risks of weak AML controls. Regulators now expect proactive monitoring and transparent reporting.

2. Instant Payment Risks

With the New Payments Platform (NPP), funds move in seconds — and so can launderers. Vendors must support real-time transaction monitoring.

3. The Cost of Compliance

AML compliance spending in Australia is rising rapidly. Vendors must provide tools that reduce false positives and investigative workload.

4. Complex Laundering Typologies

From trade-based money laundering to digital mule networks, criminals are exploiting new channels. Vendors must offer adaptive, AI-powered solutions.

What to Look for in Top AML Software Vendors

1. Proven AUSTRAC Compliance

The vendor should align with Australian AML/CTF Act obligations, including support for:

  • Suspicious Matter Reports (SMRs)
  • Threshold Transaction Reports (TTRs)
  • Complete audit trails

2. Real-Time Transaction Monitoring

Vendors must provide millisecond-level detection for:

  • Instant payments (NPP)
  • Cross-border corridors
  • Crypto-to-fiat transfers

3. AI and Machine Learning Capabilities

The best vendors go beyond rules, offering:

  • Adaptive anomaly detection
  • False positive reduction
  • Continuous model learning

4. Flexibility and Scalability

Solutions should fit both Tier-1 banks and scaling fintechs. Cloud-ready platforms with modular features are a must.

5. Explainability and Transparency

Glass-box AI ensures regulators and internal teams understand why an alert was generated.

6. Strong Vendor Support

Top vendors provide implementation guidance, typology updates, and local compliance expertise — not just software.

Common Pitfalls When Choosing an AML Vendor

  • Focusing on cost alone: Cheaper vendors often lack the sophistication to detect modern threats.
  • Ignoring integration needs: Some platforms don’t work seamlessly with existing case management systems.
  • Overlooking updates: Vendors that don’t regularly refresh typologies leave institutions vulnerable.
ChatGPT Image Aug 17, 2025, 09_25_47 PM

Trends Among Top AML Vendors in 2025

Federated Intelligence

Leading vendors now share anonymised typologies across institutions to detect emerging risks faster.

Agentic AI

Adaptive agents that handle specific compliance tasks, from risk scoring to case narration.

Simulation Engines

The ability to test new detection scenarios before live deployment.

Cross-Channel Visibility

Unified monitoring across core banking, remittance, wallets, cards, and crypto.

Spotlight: Tookitaki’s FinCense

Among the top AML software vendors, Tookitaki is recognised for reimagining compliance through FinCense, its end-to-end AML and fraud prevention platform.

  • Agentic AI: Detects evolving threats in real time with minimal false positives.
  • Federated Learning: Accesses insights from the AFC Ecosystem — a global compliance network.
  • FinMate AI Copilot: Helps investigators summarise cases, suggest next steps, and generate regulator-ready reports.
  • Full AUSTRAC Compliance: Covers SMRs, TTRs, and explainable audit trails.
  • Real-World Typologies: Continuously updated from actual laundering and fraud scenarios worldwide.

FinCense helps Australian banks, fintechs, and remittance providers meet AUSTRAC’s standards while operating more efficiently and transparently.

Conclusion: Vendor Choice = Competitive Advantage

In Australia, AML software is no longer just about compliance — it’s about resilience, trust, and future-readiness. Choosing from the top AML software vendors means prioritising real-time detection, AI adaptability, and regulatory transparency.

Pro tip: Don’t just buy software. Invest in a vendor that evolves with you — and with the criminals you’re fighting.

Top AML Software Vendors in Australia: What to Look For in 2025
Blogs
14 Aug 2025
5 min
read

Smarter Investigations: The Rise of AML Investigation Tools in Australia

In the battle against financial crime, the right AML investigation tools turn data overload into actionable intelligence.

Australian compliance teams face a constant challenge — growing transaction volumes, increasingly sophisticated money laundering techniques, and tighter AUSTRAC scrutiny. In this environment, AML investigation tools aren’t just nice-to-have — they’re essential for turning endless alerts into fast, confident decisions.

Talk to an Expert

Why AML Investigations Are Getting Harder in Australia

1. Explosion of Transaction Data

With the New Payments Platform (NPP) and cross-border corridors, institutions must monitor millions of transactions daily.

2. More Complex Typologies

From mule networks to shell companies, layering techniques are harder to detect with static rules alone.

3. Regulatory Expectations

AUSTRAC demands timely and accurate Suspicious Matter Reports (SMRs). Delays or incomplete investigations can lead to penalties and reputational damage.

4. Resource Constraints

Skilled AML investigators are in short supply. Teams must do more with fewer people — making efficiency critical.

What Are AML Investigation Tools?

AML investigation tools are specialised software platforms that help compliance teams analyse suspicious activity, prioritise cases, and document findings for regulators.

They typically include features such as:

  • Alert triage and prioritisation
  • Transaction visualisation
  • Entity and relationship mapping
  • Case management workflows
  • Automated reporting capabilities

Key Features of Effective AML Investigation Tools

1. Integrated Case Management

Centralise all alerts, documents, and investigator notes in one platform.

2. Entity Resolution & Network Analysis

Link accounts, devices, and counterparties to uncover hidden connections in laundering networks.

3. Transaction Visualisation

Graph-based displays make it easier to trace fund flows and identify suspicious patterns.

4. AI-Powered Insights

Machine learning models suggest likely outcomes, surface overlooked anomalies, and flag high-risk entities faster.

5. Workflow Automation

Automate repetitive steps like KYC refresh requests, sanctions re-checks, and document retrieval.

6. Regulator-Ready Reporting

Generate Suspicious Matter Reports (SMRs) and audit logs that meet AUSTRAC’s requirements.

ChatGPT Image Aug 13, 2025, 12_27_28 PM

Why These Tools Matter in Australia’s Compliance Landscape

  • Speed: Fraud and laundering through NPP happen in seconds — investigations need to move just as fast.
  • Accuracy: AI-driven tools reduce false positives, ensuring analysts focus on real threats.
  • Compliance Assurance: Detailed audit trails prove that due diligence was carried out thoroughly.

Use Cases in Australia

Case 1: Cross-Border Layering Detection

An Australian bank flagged multiple small transfers to different ASEAN countries. The AML investigation tool mapped the network, revealing links to a known mule syndicate.

Case 2: Crypto Exchange Investigations

AML tools traced a high-value Bitcoin-to-fiat conversion back to an account flagged in a sanctions database, enabling rapid SMR submission.

Advanced Capabilities to Look For

Federated Intelligence

Access anonymised typologies and red flags from a network of institutions to spot emerging threats faster.

Embedded AI Copilot

Assist investigators in summarising cases, recommending next steps, and even drafting SMRs.

Scenario Simulation

Test detection scenarios against historical data before deploying them live.

Spotlight: Tookitaki’s FinCense and FinMate

FinCense integrates investigation workflows directly into its AML platform, while FinMate, Tookitaki’s AI investigation copilot, supercharges analyst productivity.

  • Automated Summaries: Generates natural language case narratives for internal and regulatory reporting.
  • Risk Prioritisation: Highlights the highest-risk cases first.
  • Real-Time Intelligence: Pulls in global typology updates from the AFC Ecosystem.
  • Full Transparency: Glass-box AI explains every decision, satisfying AUSTRAC’s audit requirements.

With FinCense and FinMate, Australian institutions can cut investigation times by up to 50% — without compromising quality.

Conclusion: From Data to Decisions — Faster

The volume and complexity of alerts in modern AML programmes make manual investigation unsustainable. The right AML investigation tools transform scattered data into actionable insights, helping compliance teams stay ahead of both criminals and regulators.

Pro tip: Choose tools that not only investigate faster, but also learn from every case — making your compliance programme smarter over time.

Smarter Investigations: The Rise of AML Investigation Tools in Australia
Blogs
13 Aug 2025
5 min
read

Smarter Defences: How Machine Learning is Transforming Fraud Detection in Philippine Banking

Fraud in banking has never been faster, smarter, or more relentless — and neither have the defences.

In the Philippines, the rapid rise of digital banking, mobile wallets, and instant payments has created unprecedented opportunities for growth — and for fraudsters. From account takeovers to synthetic identity scams, financial institutions are under constant attack. Traditional rule-based detection systems, while useful, are no longer enough. Enter machine learning (ML) — the technology redefining fraud detection by spotting suspicious activity in real time and adapting to new threats before they cause damage.

Talk to an Expert

The Growing Fraud Threat in Philippine Banking

Digital banking adoption in the Philippines has surged in recent years, driven by initiatives like the BSP’s Digital Payments Transformation Roadmap and the expansion of fintech services. While these advancements boost financial inclusion, they also open the door to fraud.

According to the Bankers Association of the Philippines, reported cyber fraud incidents have increased steadily, with phishing, account takeover (ATO), and card-not-present (CNP) fraud among the top threats.

Key trends include:

  • Instant payment exploitation: Fraudsters leveraging PESONet and InstaPay for rapid fund transfers.
  • Social engineering scams: Convincing victims to disclose personal and banking details.
  • Cross-border fraud networks: Syndicates funnelling illicit funds via multiple jurisdictions.

In this environment, speed, accuracy, and adaptability are critical — qualities where ML excels.

Why Traditional Fraud Detection Falls Short

Rule-based fraud detection systems rely on predefined scenarios (e.g., flagging transactions over a certain threshold or unusual logins from different IP addresses). While they can catch known patterns, they struggle with:

  • Evolving tactics: Fraudsters quickly adapt once they know the rules.
  • False positives: Too many alerts waste investigator time and frustrate customers.
  • Lack of contextual awareness: Rules can’t account for the nuances of customer behaviour.

This is where machine learning transforms the game.

How Machine Learning Enhances Fraud Detection

1. Pattern Recognition Beyond Human Limits

ML models can process millions of transactions in real time, identifying subtle anomalies in behaviour — such as unusual transaction timing, frequency, or geolocation.

2. Continuous Learning

Unlike static rules, ML systems learn from new data. When fraudsters switch tactics, the model adapts, ensuring defences stay ahead.

3. Reduced False Positives

ML distinguishes between legitimate unusual behaviour and true fraud, cutting down on unnecessary alerts. This not only saves resources but improves customer trust.

4. Predictive Capability

Advanced algorithms can predict the likelihood of a transaction being fraudulent based on historical and behavioural data, enabling proactive intervention.

ChatGPT Image Aug 13, 2025, 12_05_50 PM

Key Machine Learning Techniques in Banking Fraud Detection

Supervised Learning

Models are trained using labelled datasets — past transactions marked as “fraud” or “legitimate.” Over time, they learn the characteristics of fraudulent activity.

Unsupervised Learning

Used when there’s no labelled data, these models detect outliers and anomalies without prior examples, ideal for spotting new fraud types.

Reinforcement Learning

The system learns by trial and error, optimising decision-making as it receives feedback from past outcomes.

Natural Language Processing (NLP)

NLP analyses unstructured data such as emails, chat messages, or KYC documents to detect potential fraud triggers.

Real-World Fraud Scenarios in the Philippines Where ML Makes a Difference

  1. Account Takeover (ATO) Fraud – ML flags login attempts from unusual devices or geolocations while analysing subtle session behaviour patterns.
  2. Loan Application Fraud – Models detect inconsistencies in credit applications, cross-referencing applicant data with external sources.
  3. Payment Mule Detection – Identifying suspicious fund flows in real time, such as rapid inbound and outbound transactions in newly opened accounts.
  4. Phishing-Driven Transfers – Correlating unusual fund movement with compromised accounts reported across multiple banks.

Challenges in Implementing ML for Fraud Detection in the Philippines

  • Data Quality and Availability – ML models need vast amounts of clean, structured data. Gaps or inaccuracies can reduce effectiveness.
  • Regulatory Compliance – BSP regulations require explainability in AI models; “black box” ML can be problematic without interpretability tools.
  • Talent Gap – Limited availability of data science and ML experts in the local market.
  • Integration with Legacy Systems – Many Philippine banks still run on legacy infrastructure, complicating ML deployment.

Best Practices for Deploying ML-Based Fraud Detection

1. Start with a Hybrid Approach

Combine rule-based and ML models initially to ensure smooth transition and maintain compliance.

2. Ensure Explainability

Use explainable AI (XAI) frameworks so investigators and regulators understand why a transaction was flagged.

3. Leverage Federated Learning

Share intelligence across institutions without exposing raw data, enhancing detection of cross-bank fraud schemes.

4. Regular Model Retraining

Update models with the latest fraud patterns to stay ahead of evolving threats.

5. Engage Compliance Early

Work closely with risk and compliance teams to align ML use with BSP guidelines.

The Tookitaki Advantage: The Trust Layer to Fight Financial Crime

Tookitaki’s FinCense platform is built to help Philippine banks combat fraud and money laundering with Agentic AI — an advanced, explainable AI framework aligned with global and local regulations.

Key benefits for fraud detection in banking:

  • Real-time risk scoring on every transaction.
  • Federated intelligence from the AFC Ecosystem to detect emerging fraud typologies seen across the region.
  • Lower false positives through adaptive models trained on both local and global data.
  • Explainable decision-making that meets BSP requirements for transparency.

By combining advanced ML techniques with collaborative intelligence, FinCense gives banks in the Philippines the tools they need to protect customers, meet compliance standards, and reduce operational costs.

Conclusion: Staying Ahead of the Curve

Fraudsters in the Philippines are becoming more sophisticated, faster, and harder to trace. Relying on static, rules-only systems is no longer an option. Machine learning empowers banks to detect fraud in real time, reduce false positives, and adapt to ever-changing threats — all while maintaining compliance.

For institutions aiming to build trust in a rapidly digitising market, the path forward is clear: invest in ML-powered fraud detection now, and make it a core pillar of your risk management strategy.

Smarter Defences: How Machine Learning is Transforming Fraud Detection in Philippine Banking