Compliance Hub

How AML Technology is Transforming Financial Crime Prevention

Site Logo
Tookitaki
5 min
read

In an era where financial crimes are becoming increasingly sophisticated, traditional methods of Anti-Money Laundering (AML) are no longer sufficient. Financial institutions need to embrace advanced technology to keep pace with the evolving tactics of criminals. This blog explores the pivotal role that AML technology plays in modern compliance, highlighting key innovations like artificial intelligence, cloud computing, and blockchain. We also delve into Tookitaki’s groundbreaking solutions that are setting new standards in the fight against financial crime.

The Evolution of AML Technology

Early Days of AML Compliance

In the early days, Anti-Money Laundering (AML) efforts were largely manual. Financial institutions relied on paper-based records and human oversight to detect and prevent money laundering activities. While these methods were a good start, they had significant limitations. The sheer volume of transactions and the increasing sophistication of financial criminals made it difficult for traditional methods to keep up. This often led to missed red flags, allowing illicit activities to slip through the cracks.

The Rise of Technology in AML

As technology advanced, so did the tools available for AML compliance. The shift from manual processes to automated systems marked a significant improvement in the fight against financial crime. Technologies like Artificial Intelligence (AI), Machine Learning (ML), and blockchain began to play a crucial role in identifying suspicious activities.

These advancements have enabled financial institutions to process vast amounts of data quickly and accurately, making it easier to spot anomalies and potential risks. The rise of AML technology has not only improved efficiency but also significantly reduced the likelihood of human error.

{{cta-first}}

Key AML Technologies Shaping the Future

Artificial Intelligence and Machine Learning

Artificial Intelligence (AI) and Machine Learning (ML) have become game-changers in the world of AML. These technologies can analyze vast amounts of data in real-time, detecting patterns and anomalies that might be missed by human analysts. AI and ML enhance the ability to identify complex money laundering schemes by learning from historical data and continuously improving detection models. This means that as financial criminals develop new tactics, AI-driven AML solutions can adapt and stay one step ahead. Examples of AI in AML include the automation of transaction monitoring and the reduction of false positives, which allows compliance teams to focus on high-priority alerts.

Cloud Computing for AML

Cloud computing offers unparalleled advantages in the realm of AML, especially when it comes to managing large datasets. By leveraging cloud technology, financial institutions can store and process enormous volumes of transaction data with ease. The scalability of cloud platforms allows institutions to handle spikes in data processing needs without the need for significant upfront investment in infrastructure. Additionally, cloud-based AML systems are accessible from anywhere, ensuring that compliance teams can operate efficiently even in remote work environments. This flexibility and efficiency make cloud computing an essential component of modern AML strategies.

Blockchain Technology

Blockchain technology is another revolutionary tool in AML. It provides a transparent and immutable ledger of transactions, which makes it easier to trace the flow of funds. This traceability is particularly useful in identifying and tracking suspicious activities across borders. Blockchain's decentralized nature also reduces the risk of fraud, as no single entity has control over the entire transaction history. Financial institutions are increasingly exploring blockchain for AML purposes, particularly in areas like cross-border payments, where transparency and security are paramount.

Advanced Transaction Monitoring Systems

Transaction monitoring is a cornerstone of effective AML practices, and advanced systems are taking this to the next level. These systems use real-time analytics to monitor transactions as they occur, enabling immediate detection of potentially suspicious activities. Unlike traditional methods that might review transactions after the fact, real-time monitoring allows for instant response to risks. This proactive approach helps prevent money laundering before it can escalate. Case studies have shown that financial institutions using advanced transaction monitoring systems experience fewer compliance breaches and are better equipped to manage regulatory scrutiny.

Challenges and Future Trends in AML Technology

Addressing False Positives

One of the most persistent challenges in AML technology is the issue of false positives. These occur when legitimate transactions are flagged as suspicious, leading to unnecessary investigations and increased operational costs. False positives can overwhelm compliance teams, diverting attention from genuine threats. To tackle this, Tookitaki employs advanced AI-driven techniques that significantly reduce the number of false positives. By learning from past data and continuously refining its algorithms, Tookitaki’s solutions ensure that alerts are more accurate, allowing compliance teams to focus on the most critical cases. This not only improves efficiency but also enhances the overall effectiveness of AML efforts.

Regulatory Compliance and Technology

As financial crime tactics evolve, so do the regulations that govern AML practices. Keeping up with these changing regulations can be a daunting task for financial institutions. This is where technology plays a crucial role. Modern AML solutions, like those offered by Tookitaki, are designed to be adaptable, ensuring that they can quickly incorporate new regulatory requirements. The AFC Ecosystem, for example, continuously updates its compliance frameworks based on the latest regulatory changes, ensuring that institutions remain compliant without having to overhaul their systems. This ability to stay ahead of regulatory demands is a key advantage of using advanced AML technology.

The Future of AML Technology

Looking ahead, the future of AML technology is set to be shaped by several emerging trends. One of the most significant is the increased use of artificial intelligence and machine learning, not just for detection but also for predicting and preventing financial crimes before they occur. Additionally, technologies like blockchain and advanced analytics will likely become more integrated into AML systems, offering even greater transparency and efficiency. As financial criminals continue to develop more sophisticated methods, the need for innovative and adaptive AML technologies will only grow. Institutions that embrace these technologies will be better equipped to stay ahead of threats and maintain compliance in an increasingly complex landscape.

{{cta-guide}}

The Role of Tookitaki in AML Technology Innovation

FinCense: Tookitaki’s End-to-End Compliance Platform

FinCense is a key innovation from Tookitaki, offering an end-to-end compliance solution that integrates seamlessly with the AFC Ecosystem. FinCense is designed to cover every aspect of AML and fraud prevention, from customer onboarding and transaction monitoring to name screening and alert management. What sets FinCense apart is its use of AI and Machine Learning to enhance detection accuracy and reduce false positives. The platform’s ability to quickly operationalize new typologies from the AFC Ecosystem ensures that financial institutions are always equipped to deal with the latest threats. With FinCense, compliance becomes more efficient, less error-prone, and more aligned with the ever-evolving regulatory landscape.

The Anti-Financial Crime (AFC) Ecosystem

Tookitaki has taken a groundbreaking approach to AML technology with its Anti-Financial Crime (AFC) Ecosystem. This platform is not just a tool but a collaborative community where financial institutions, regulators, and industry experts come together to share insights and strategies. The AFC Ecosystem leverages collective intelligence to continuously update and refine its AML capabilities. This means that as new money laundering tactics emerge, the ecosystem adapts in real time, providing financial institutions with the most current and effective tools to combat financial crime. By joining this ecosystem, institutions benefit from the shared knowledge of a global network, significantly enhancing their ability to detect and prevent financial crimes.

Why Financial Institutions Must Embrace AML Technology

In today’s fast-evolving financial landscape, staying ahead of financial criminals is not just an option—it’s a necessity. The complexity and sophistication of modern money laundering schemes require equally advanced solutions. AML technology, powered by artificial intelligence, machine learning, and other cutting-edge tools, provides financial institutions with the means to detect, prevent, and respond to financial crimes more effectively than ever before.

By adopting advanced AML solutions like Tookitaki’s AFC Ecosystem and FinCense platform, financial institutions can ensure they remain compliant with ever-changing regulations while significantly enhancing their ability to combat financial crime. The future of AML lies in technology, and those who invest in it today will be better prepared for the challenges of tomorrow.

Explore how Tookitaki’s AFC Ecosystem and FinCense platform can revolutionize your institution’s approach to AML compliance. Join the growing community of financial institutions that are leveraging collective intelligence and cutting-edge technology to stay ahead of financial crime.

 

By submitting the form, you agree that your personal data will be processed to provide the requested content (and for the purposes you agreed to above) in accordance with the Privacy Notice

success icon

We’ve received your details and our team will be in touch shortly.

In the meantime, explore how Tookitaki is transforming financial crime prevention.
Learn More About Us
Oops! Something went wrong while submitting the form.

Ready to Streamline Your Anti-Financial Crime Compliance?

Our Thought Leadership Guides

Blogs
17 Sep 2025
6 min
read

The Investigator’s Edge: Why AML Investigation Software Is a Must-Have for Singapore’s Banks

In the fight against financial crime, detection is only half the battle. The real work starts with the investigation.

Singapore’s financial institutions are facing unprecedented scrutiny when it comes to anti-money laundering (AML) compliance. As regulators raise the bar and criminals get smarter, the ability to investigate suspicious transactions swiftly and accurately is now a non-negotiable requirement. This is where AML investigation software plays a critical role.

In this blog, we explore why AML investigation software matters more than ever in Singapore, what features banks should look for, and how next-generation tools are transforming compliance teams from reactive units into proactive intelligence hubs.

Talk to an Expert

Why Investigation Capabilities Matter in AML Compliance

When a transaction monitoring system flags an alert, it kicks off an entire chain of actions. Analysts must determine whether it's a false positive or a genuine case of money laundering. This requires gathering context, cross-referencing multiple systems, documenting findings, and preparing reports for auditors or regulators.

Doing all of this manually is not only time-consuming, but also increases the risk of human error and compliance gaps. For banks operating in Singapore's high-stakes environment, where MAS expects prompt and well-documented responses, this is a risk few can afford.

Key Challenges Faced by AML Investigators in Singapore

1. Alert Overload

Analysts are often overwhelmed by a high volume of alerts, many of which turn out to be false positives. This slows down investigations and increases backlogs.

2. Fragmented Data Sources

Information needed for a single investigation is typically spread across customer databases, transaction logs, sanctions lists, and case notes, making it difficult to form a complete picture quickly.

3. Manual Documentation

Writing investigation summaries and preparing Suspicious Transaction Reports (STRs) can take hours, reducing the time available for deeper analysis.

4. Audit and Regulatory Pressure

MAS and other regulators expect detailed, traceable justifications for every action taken. Missing documentation or inconsistent processes can lead to penalties.

What AML Investigation Software Does

AML investigation software is designed to streamline, standardise, and enhance the process of investigating suspicious activities. It bridges the gap between alert and action.

Core Functions Include:

  • Case creation and automated alert ingestion
  • Intelligent data aggregation from multiple systems
  • Risk scoring and prioritisation
  • Investigation checklists and audit trails
  • Natural language summaries for STR filing
  • Collaborative case review and escalation tools

Must-Have Features in AML Investigation Software

When evaluating solutions, Singaporean banks should look for these critical capabilities:

1. Smart Alert Triage

The system should help investigators prioritise high-risk alerts by assigning risk scores based on factors such as transaction patterns, customer profile, and historical activity.

2. Contextual Data Aggregation

A strong tool pulls in data from across the bank — including core banking systems, transaction logs, KYC platforms, and screening tools — to provide investigators with a consolidated view.

3. Natural Language Summarisation

Leading software uses AI to generate readable, regulator-friendly narratives that summarise key findings, reducing manual work and improving consistency.

4. Audit-Ready Case Management

Every step taken during an investigation should be logged and traceable, including decision-making, reviewer notes, and attached evidence.

5. Integration with STR Reporting Systems

The software should support direct integration with platforms such as GoAML, used in Singapore for suspicious transaction reporting.

ChatGPT Image Sep 17, 2025, 11_47_45 AM

How Tookitaki's FinCense Platform Elevates AML Investigations

Tookitaki’s FinCense platform is designed with Singapore’s regulatory expectations in mind and includes a specialised Smart Disposition Engine for AML investigations.

Key Features:

  • AI Copilot (FinMate)
    Acts as an intelligent assistant that helps compliance teams assess red flags, suggest investigative steps, and provide context for alerts.
  • Smart Narration Engine
    Automatically generates STR-ready summaries, saving hours of manual writing while ensuring consistency and auditability.
  • Unified View of Risk
    Investigators can see customer profiles, transaction history, typologies triggered, and sanction screening results in one interface.
  • Scenario-Based Insight
    Through integration with the AFC Ecosystem, the system maps alerts to real-world money laundering typologies relevant to the region.
  • Workflow Customisation
    Investigation steps, user roles, and escalation logic can be tailored to the bank’s internal policies and team structure.

Benefits for Compliance Teams

By implementing AML investigation software like FinCense, banks in Singapore can achieve:

  • Up to 50 percent reduction in investigation time
  • Enhanced quality and consistency of STRs
  • Faster closure of true positives
  • Lower regulatory risk and better audit outcomes
  • Improved collaboration across compliance, risk, and operations

Checklist: Is Your Investigation Process Ready for 2025?

Ask these questions to evaluate your current system:

  • Are investigators manually pulling data from multiple systems?
  • Is there a standard template for documenting cases?
  • How long does it take to prepare an STR?
  • Can you trace every decision made during an investigation?
  • Are your analysts spending more time writing than investigating?

If any of these answers raise red flags, it may be time to upgrade.

Conclusion: Better Tools Build Stronger Compliance

AML investigation software is no longer a nice-to-have. It is a strategic enabler for banks to stay ahead of financial crime while meeting the rising expectations of regulators, auditors, and customers.

In Singapore's rapidly evolving compliance landscape, banks that invest in smart, AI-powered investigation tools will not only keep up. They will lead the way.

Ready to take your AML investigations to the next level? The future is intelligent, integrated, and investigator-first.

The Investigator’s Edge: Why AML Investigation Software Is a Must-Have for Singapore’s Banks
Blogs
17 Sep 2025
6 min
read

Agentic AI in Compliance: The Secret Weapon Against Financial Crime

Agentic AI is reshaping compliance in Australian banking, delivering real-time intelligence and smarter investigations.

Introduction

Compliance has always been a balancing act. Banks and fintechs must detect suspicious activity, meet regulatory requirements, and protect customers, all while keeping costs under control. In Australia, where AUSTRAC has stepped up enforcement and the New Payments Platform (NPP) enables real-time transfers, the pressure on compliance teams has never been greater.

Enter Agentic AI in compliance. Unlike traditional machine learning, Agentic AI operates as intelligent agents that perform specialised tasks within compliance workflows. It is transparent, explainable, and adaptive, making it a powerful tool for anti-money laundering (AML) and fraud prevention. For Australian institutions, Agentic AI is not just the future — it is fast becoming a necessity.

Talk to an Expert

What is Agentic AI in Compliance?

Agentic AI refers to artificial intelligence models designed to act autonomously as agents within a broader system. In compliance, this means AI tools that:

  • Detect suspicious activity in real time.
  • Adapt to new typologies and fraud schemes.
  • Support investigators with case summaries and recommendations.
  • Automate reporting in regulator-ready formats.

Unlike black-box AI, Agentic AI is explainable, meaning every decision can be justified to regulators such as AUSTRAC.

Why Compliance Needs Agentic AI

1. Real-Time Payment Risks

With NPP and PayTo, funds can move across accounts in seconds. Legacy systems cannot keep up. Agentic AI enables millisecond-level monitoring.

2. Alert Overload

Traditional systems produce high false positives. Agentic AI reduces noise, allowing compliance teams to focus on genuine risks.

3. Evolving Typologies

From mule accounts to deepfake scams, criminals are innovating constantly. Agentic AI learns from new patterns and adapts automatically.

4. AUSTRAC Expectations

Regulators require transparency and effectiveness. Agentic AI provides explainable alerts, audit trails, and regulator-ready reports.

5. Rising Compliance Costs

Staffing costs are high in Australia’s compliance sector. AI reduces manual workload and increases investigator efficiency.

How Agentic AI Works in Compliance

1. Transaction Monitoring

Agentic AI reviews transactions in real time, assigning risk scores and flagging anomalies.

2. Behavioural Analytics

Tracks customer behaviour across logins, devices, and transactions to detect unusual activity.

3. Case Investigation

AI copilots summarise cases, suggest next steps, and draft Suspicious Matter Reports (SMRs).

4. Continuous Learning

Agentic AI adapts from investigator feedback and new data, improving accuracy over time.

5. Federated Intelligence

Through networks like the AFC Ecosystem, Agentic AI incorporates insights from global compliance experts without exposing sensitive data.

ChatGPT Image Sep 17, 2025, 11_09_43 AM

Use Cases of Agentic AI in Compliance

  1. Account Takeover Fraud: Detects unusual login and transaction activity in real time.
  2. Authorised Push Payment (APP) Scams: Identifies high-risk transfers initiated under duress.
  3. Mule Networks: Maps hidden links between accounts, devices, and transactions.
  4. Sanctions Screening: Flags high-risk names or entities with contextual intelligence.
  5. KYC/CDD Monitoring: Automates risk scoring of new and existing customers.
  6. Regulatory Reporting: Auto-generates SMRs, TTRs, and IFTIs in AUSTRAC-compliant formats.

Benefits of Agentic AI in Compliance

  • Real-Time Detection: Protects institutions from losses and reputational damage.
  • Reduced False Positives: Saves investigators time and reduces operational costs.
  • Explainability: Provides regulators with clear reasoning for alerts.
  • Efficiency: Automates routine investigation tasks.
  • Scalability: Works for both Tier-1 banks and smaller institutions.
  • Customer Trust: Demonstrates proactive protection against fraud.

Challenges in Deploying Agentic AI

  • Data Quality Issues: Poor data reduces AI accuracy.
  • Integration Complexity: Legacy systems make implementation difficult.
  • Skills Gap: Few compliance teams have in-house AI expertise.
  • Cost of Adoption: Smaller institutions may struggle with upfront costs.
  • Change Management: Teams need training to trust and use AI effectively.

Case Example: Community-Owned Banks Adopting Agentic AI

Community-owned banks such as Regional Australia Bank and Beyond Bank are showing how Agentic AI can be deployed effectively. By adopting advanced compliance platforms, they have reduced false positives, improved reporting, and enhanced their ability to detect mule networks in real time.

These banks prove that Agentic AI is not only for Tier-1 players. With the right platform, even mid-sized institutions can benefit from AI-driven compliance innovation.

Spotlight: Tookitaki’s FinCense

FinCense, Tookitaki’s compliance platform, integrates Agentic AI to deliver end-to-end compliance and fraud prevention.

  • Real-Time Monitoring: Detects suspicious activity across NPP, PayTo, remittance corridors, and crypto.
  • Agentic AI Models: Continuously adapt to new money laundering and fraud patterns.
  • Federated Intelligence: Draws from typologies contributed by the AFC Ecosystem.
  • FinMate AI Copilot: Summarises alerts, recommends next steps, and drafts regulator-ready reports.
  • AUSTRAC Compliance: Automates SMRs, TTRs, and IFTIs with complete audit trails.
  • Cross-Channel Coverage: Banking, wallets, cards, remittances, and crypto monitored under one system.

FinCense helps Australian institutions reduce compliance costs, meet AUSTRAC requirements, and strengthen customer trust.

Best Practices for Implementing Agentic AI

  1. Start with Data Quality: Clean, reliable data ensures accurate AI outputs.
  2. Adopt Explainable Models: Transparency is essential for AUSTRAC and internal stakeholders.
  3. Integrate Across Channels: Cover NPP, cards, wallets, and crypto under one platform.
  4. Pilot First: Begin with a small use case before scaling across the institution.
  5. Train Investigators: Ensure teams are equipped to work with AI copilots.
  6. Engage Regulators Early: Keep AUSTRAC informed about how AI is being used.

The Future of Agentic AI in Compliance

  1. Deeper Integration with Real-Time Payments: PayTo and other overlay services will require millisecond-level monitoring.
  2. Countering AI-Powered Fraud: Criminals will use deepfakes and synthetic identities, making Agentic AI even more critical.
  3. Shared Compliance Networks: Banks will collaborate more closely through federated learning.
  4. AI-First Compliance Teams: Investigations will be led by AI copilots, with human oversight.
  5. Sustainability of Compliance: Automation will help reduce the rising cost of compliance.

Conclusion

Agentic AI is not just a buzzword. It is redefining compliance in Australia by making fraud detection faster, investigations smarter, and reporting more transparent. For banks and fintechs facing AUSTRAC’s high expectations, Agentic AI offers a path to resilience and trust.

Community-owned banks like Regional Australia Bank and Beyond Bank demonstrate that adoption is possible for institutions of all sizes. Platforms like Tookitaki’s FinCense integrate Agentic AI to deliver compliance outcomes that go beyond regulatory checkboxes.

Pro tip: The future of compliance will belong to institutions that combine real-time monitoring, adaptive AI, and explainable reporting. Agentic AI is the foundation of that future.

Agentic AI in Compliance: The Secret Weapon Against Financial Crime
Blogs
16 Sep 2025
6 min
read

AI in Fraud Detection in Banking: Transforming Australia’s Fight Against Financial Crime

With fraud moving faster than ever, Australian banks are turning to AI to detect and prevent scams in real time.

Fraud is one of the biggest challenges facing banks today. In Australia, losses to scams exceeded AUD 3 billion in 2024, with criminals exploiting digital banking, instant payments, and cross-border channels. Legacy systems, built for batch monitoring, cannot keep up with the scale and speed of these threats.

This is why AI in fraud detection in banking is rapidly becoming a necessity. Artificial intelligence allows institutions to detect suspicious activity in real time, adapt to new fraud typologies, and reduce the burden on compliance teams. In this blog, we explore how AI is reshaping fraud detection in Australia, the benefits it brings, and how banks can implement it effectively.

Talk to an Expert

Why Fraud Detection Needs AI

1. Speed of Real-Time Payments

The New Payments Platform (NPP) has transformed banking in Australia by enabling instant transfers. Unfortunately, it also allows fraudsters to move stolen funds before they can be recalled. AI is essential for monitoring and scoring transactions within milliseconds.

2. Evolving Typologies

From account takeover fraud to deepfake scams, criminals are constantly innovating. Static rules cannot keep up. AI models can detect unusual patterns that indicate new fraud techniques.

3. Rising Alert Volumes

Traditional systems flood investigators with false positives. AI reduces noise by distinguishing genuine risks from harmless anomalies.

4. AUSTRAC Expectations

Regulators demand effective monitoring and reporting under the AML/CTF Act 2006. AI provides transparency and scalability to meet these expectations.

How AI Works in Fraud Detection

1. Machine Learning Models

AI systems are trained on historical transaction data to identify suspicious behaviour. Unlike static rules, machine learning adapts over time.

2. Behavioural Analytics

AI monitors customer behaviour, such as login times, device usage, and transaction patterns, to flag unusual activity.

3. Anomaly Detection

AI identifies deviations from normal behaviour, such as sudden large transfers or new device access.

4. Natural Language Processing (NLP)

Used in screening communications or transaction details for suspicious intent.

5. Federated Learning

Allows banks to share insights on fraud patterns without exposing sensitive customer data.

Common Fraud Typologies Detected by AI

  1. Account Takeover (ATO): AI detects unusual login behaviour, device changes, and suspicious transfers.
  2. Authorised Push Payment (APP) Scams: Analyses transaction context and behavioural cues to flag high-risk payments.
  3. Mule Account Networks: Identifies linked accounts moving funds in rapid succession.
  4. Card-Not-Present Fraud: Flags unusual online purchase behaviour.
  5. Business Email Compromise (BEC): Detects unusual payment instructions and new beneficiary activity.
  6. Crypto Laundering: Monitors conversions between fiat and digital assets for anomalies.

Red Flags AI Helps Detect in Real Time

  • High-value transfers to new or suspicious beneficiaries.
  • Transactions inconsistent with customer profiles.
  • Multiple failed login attempts followed by success.
  • Rapid inflows and outflows with no account balance retention.
  • Sudden changes in customer details followed by large transfers.
  • Transfers to high-risk jurisdictions or exchanges.

Benefits of AI in Fraud Detection

1. Real-Time Monitoring

AI processes data instantly, essential for NPP and PayTo transactions.

2. Reduction in False Positives

Adaptive models cut down on irrelevant alerts, saving investigators’ time.

3. Faster Investigations

AI copilots summarise cases and recommend next steps, reducing investigation times.

4. Scalability

AI can handle increasing transaction volumes without needing large compliance teams.

5. Improved Regulatory Alignment

Explainable AI ensures alerts can be justified to AUSTRAC and other regulators.

6. Enhanced Customer Trust

Customers are more likely to trust banks that prevent fraud proactively.

ChatGPT Image Sep 15, 2025, 07_40_34 PM

Challenges in Deploying AI

  • Data Quality Issues: AI is only as good as the data it learns from.
  • Integration with Legacy Systems: Many banks still rely on outdated infrastructure.
  • Skills Shortages: Australia faces a lack of experienced data scientists and AML specialists.
  • Explainability Concerns: Black-box models may not meet AUSTRAC’s transparency expectations.
  • Cost of Implementation: High initial investment can be a barrier for smaller institutions.

Case Example: Community-Owned Banks Using AI

Community-owned banks like Regional Australia Bank and Beyond Bank are adopting AI-powered compliance platforms to strengthen fraud detection. These institutions demonstrate that advanced fraud prevention is not only for Tier-1 banks. By leveraging AI, they reduce false positives, detect mule networks, and meet AUSTRAC’s expectations, all while operating efficiently.

Spotlight: Tookitaki’s FinCense

FinCense, Tookitaki’s compliance platform, integrates AI at its core to deliver advanced fraud detection capabilities for Australian institutions.

  • Real-Time Monitoring: Detects suspicious activity across NPP, PayTo, and cross-border corridors.
  • Agentic AI: Learns from evolving fraud patterns and continuously improves accuracy.
  • Federated Intelligence: Accesses real-world typologies from the AFC Ecosystem.
  • FinMate AI Copilot: Summarises cases, recommends next steps, and drafts regulator-ready reports.
  • AUSTRAC Compliance: Generates Suspicious Matter Reports (SMRs) and maintains audit trails.
  • Cross-Channel Protection: Covers banking, cards, wallets, remittances, and crypto.

FinCense empowers banks to fight fraud proactively, cut compliance costs, and build customer trust.

Best Practices for Implementing AI in Fraud Detection

  1. Start with Data Quality: Clean, structured data is the foundation of effective AI.
  2. Adopt Explainable AI: Ensure every alert can be justified to regulators.
  3. Integrate Across Channels: Cover all payment types, from NPP to crypto.
  4. Train Staff on AI Tools: Empower investigators to use AI effectively.
  5. Pilot and Scale Gradually: Start small, refine models, then scale across the enterprise.
  6. Collaborate with Peers: Share insights through federated learning for stronger defences.

The Future of AI in Fraud Detection in Australia

  1. Deeper PayTo Integration: AI will play a critical role in monitoring new overlay services.
  2. Detection of Deepfake Scams: AI will need to counter AI-driven fraud tactics such as synthetic voice and video.
  3. Shared Fraud Databases: Industry-wide collaboration will improve real-time detection.
  4. AI-First Compliance Teams: Copilots like FinMate will become standard tools for investigators.
  5. Balance Between Security and Experience: AI will enable strong fraud prevention with minimal customer friction.

Conclusion

AI is transforming fraud detection in banking, particularly in Australia where real-time payments and evolving scams create unprecedented risks. By adopting AI-powered platforms, banks can detect threats earlier, reduce false positives, and ensure AUSTRAC compliance.

Community-owned banks like Regional Australia Bank and Beyond Bank prove that even mid-sized institutions can lead in AI-driven compliance innovation. For all financial institutions, the path forward is clear: embrace AI not just as a tool, but as a cornerstone of fraud detection and customer trust.

Pro tip: The most effective AI in fraud detection is transparent, adaptive, and integrated into the entire compliance workflow. Anything less leaves banks one step behind fraudsters.

AI in Fraud Detection in Banking: Transforming Australia’s Fight Against Financial Crime