Compliance Hub

Why Do We Need Anti Money Laundering (AML) In the Insurance Sector?

Site Logo
Tookitaki
25 Mar 2021
8 min
read

Financial crime has been recorded in the insurance industry across the world. According to a research done by PWC in 2018, 62 percent of those surveyed have been victims of financial fraud in the preceding two years. Even if most insurance company products are not the primary target for money launderers/criminals, they are nonetheless at danger of being used as a vehicle for laundering money, according to the Financial Task Force (FATF), an intergovernmental regulatory agency charged with combating money laundering.

Because of the large flows of funds into and out of their businesses, life insurance companies are particularly vulnerable to money laundering. Most life insurance companies offer highly flexible policies and investment products that allow customers to deposit and then withdraw large sums of money with only a minor loss in value.

Criminals, for example, utilise their illegal cash to purchase life insurance annuity contracts.

Alternatively, the opposite scenario occurs, when they remove money from life insurance contracts to support other unlawful operations. Insurance company agents/brokers are frequently ignorant of such bogus circumstances and hence fall prey to money laundering scams.

How do Governments and International organisations respond?

Governments and international organisations respond by enacting a variety of anti-money laundering life insurance legislation and issuing life insurance sanctions lists. With fines and jail sentences as part of the compliance penalty, life insurance companies should make sure they understand their duties and how to apply them as part of their AML strategy.

Insurance firms are classified as “companies/financial institutions” under the Bank Secrecy Act (BSA) of 1970. This implies they must design and enforce compliance requirements in the same way that other businesses and financial institutions do. The insurance industry’s compliance programme encompasses annuity contracts, life insurance, and other products. The statute mandates that insurance companies keep relevant documents and produce reports to aid law enforcement in the investigation of criminal conduct and other financial crimes such as tax fraud.

What Are The Regulations For AML Life Insurance?

The majority of financial authorities have risk-based transaction monitoring regulations in place for insurance firms operating inside their countries. The Bank Secrecy Act (BSA) in the United States defines a set of “covered items” for which transaction monitoring is required:

  • Life insurance plans that are permanent (excluding group life insurance policies)
  • Contracts for annuities (excluding group annuity contracts)
  • Any insurance policy that has a cash value or investment component

Suspicious Activity Reports: Insurance companies are required under the BSA to send suspicious activity reports (SARs) to the Financial Crimes Enforcement Network (FinCEN) when they discover suspicious transactions involving one of the covered products. FinCEN creates a SAR form exclusively for insurance firms; when filling out the form, insurers must provide the following information:

FinCEN has established a $5,000 threshold for suspicious transactions that require SAR filing. Insurers should also be aware of a number of warning signs that might suggest money laundering or terrorism funding. The following are some of the red flags that should be looked out for during a transaction:

  • Excessive insurance
  • Excessive or unusual cash borrowing against policy/annuity
  • Proceeds sent to or received from unrelated third party
  • Suspicious life settlement sales insurance (e.g. STOLI’s, Viaticals)
  • Suspicious termination of policy or contract at the cost of the customer/ a third party
  • Unclear or no insurable interest (does not reflect customer’s needs)
  • Unusual payment methods (cash, or structured amounts)
  • Customer reluctance to provide identification

The Financial Action Task Force (FATF) is an international organisation that develops anti-money laundering insurance sector advice for its member governments to follow (as a member state, the US enacts FATF requirements in the BSA). The FATF collaborates with private insurance firms to ensure that its laws are effective and current.

Financial authorities in Asia-Pacific are similarly concerned about the danger presented by life insurance products. Insurance sector rules in APAC, like those in other jurisdictions, are risk-based and include a variety of transaction monitoring requirements. The Monetary Authority of Singapore (MAS), for example, provides special regulations for insurers in Notice 314 on the Prevention of Money Laundering and Countering Terrorism Financing.

Insurance firms must comply with targeted financial sanctions imposed by international and governmental agencies on consumers, corporations, and persons. In practise, this implies that insurance companies are limited or forbidden from providing life insurance to consumers who appear on government sanction lists.

As a consequence, insurers must implement sanctions screening mechanisms in their anti-money laundering systems in order to identify customers who appear on these lists. When clients (policyholders or beneficiaries) are placed on sanctions lists, insurance firms must take steps to halt transactions or freeze assets, as well as notify the necessary authorities.

There may be overlap between multiple sanctions lists because numerous foreign authorities have the same AML/CFT goals. The Office of Foreign Assets Control (OFAC) sanctions list, as well as the UN Security Council sanctions list, are implemented in the United States.
The following are important considerations for insurers when developing a sanctions compliance policy:

  • Continuous screening: Companies must make sure that its sanctions programme screens clients on a regular basis to keep up with changing risk profiles.
  • Risk based: Firms must choose sanctions watchlists based on the risk posed by their customers and the areas in which they do business.
  • Process of confirmation: When a client is matched to a sanctions list, companies should have a method in place to verify the customer’s identity and placement on the list.
  • Identification of mistakes: Sanctions programmes should have fail-safe features in place to discover staff mistakes or even purposeful attempts to evade the screening process.

 

How to Practice AML in Insurance Companies?

While enterprises and insurance companies are obligated to follow the AML compliance programme, they should also ensure that they are not responsible for any money laundering offences. Money laundering entails a series of steps that may or may not be as closely related with insurance businesses as they are with other financial industries.

In other situations, though, their involvement may be deemed a crime. For example, if an insurance business joins in or interacts in unlawful funds while knowing their real source, they are committing money laundering. Knowing the nature of the unlawful profits and yet deciding to conduct any transactions with the funds indicates that the individual or firm is unaware of the issue and decides to act without reporting or investigating the illicit funds case. If the corporation chooses to escalate the case, it will be regarded a crime if an individual is suspected of being involved in criminal activities or possesses money that are illicit proceeds.

Other than allowing transactions, if the company or an employee/agent chooses to allow payment with the illicit money while having full knowledge and not investigating the source of funds, then they will be held accountable. This means that the company should establish best practices of KYC compliance regulations, to prevent such scenarios and the integrity of the company from being harmed.

The employees should start with the basic knowledge of the client, such as their name, DOB, and home address. If the client is revealed to be a Politically Exposed Person (PEP), then they should be screened against available databases for any link to criminal activity or corruption. In case of a scenario where the employee is suspicious of the customer, then they can report the suspicious individual with their details to the senior management as well as the compliance officer of the firm, both of whom can further connect with regulatory agencies.

If there are any violations of the BSA regulations, then those involved (individual/company) will incur severe criminal or civil penalties and risk of reputation. There will be additional regulatory enforcement actions by the Treasury, FinCEN, and other regulatory bodies. In order to prevent such violations, the insurance companies must develop an effective BSA/AML compliance programme to mitigate any possible ML risks and protect the company from engaging in any criminal activity.

How To Build An Anti-Money Laundering (AML) Compliance Programme for Insurance Companies

The insurance firm must follow the following rules in order to establish a complete, risk-based compliance programme with effective processes and procedures that meet with AML regulatory requirements:

  1. The insurance company should develop risk-based policies and processes along with internal controls in order to comply with BSA requirements for recordkeeping and reporting
  2. They should designate a compliance/BSA officer who ensures daily compliance, checks the effectiveness of the BSA programme, trains employees on an ongoing basis, and regularly updates the programme when required
  3. The ongoing training includes providing training about respective duties to the company’s agents, associates, and appropriate employees
  4. Independent testing of the BSA program is completed by the officer at regular intervals
  5. To get the customer’s required data that is necessary for the BSA/AML compliance programme
  6. To run regular risk assessments of the insurance company’s covered products

 

The Role of the Insurance Company when it comes to Anti-money Laundering (AML) Regulations

The following are the role and responsibilities of the insurance company to maintain AML/BSA compliance within the organisation:

Role and Responsibility of:

  • Board Members: The company’s board faculty will supervise the senior manager and guide them accordingly as to how to comply with the BSA regulatory requirements and establish the policies. The BSA officer will share the compliance reports, based on the results of independent testing and risk assessments, with the board members, who will review them on a regular basis. It is the board’s responsibility to assign necessary resources and funding for implementing the BSA compliance function in the company.
  • Senior Manager: The senior manager’s duty is to execute the compliance program efficiently, along with the appropriate policies and processes. The senior manager works above the BSA officer and overlooks the necessary procedures and internal controls that are being operated successfully. The manager will set the tone for the company to follow the guidelines. These are necessary for compliance and to maintain a compliance culture throughout the company.

 

The role of the BSA Officer in insurance and AML

It is the BSA officer’s responsibility to:

  1. Establish and implement the compliance programme in the company.
  2. They need to develop the BSA initiative and update the compliance programme when it is required and present the updated programme to the board for approval.
  3. They must review the risk assessment along with the internal controls that will be added to the programme
  4. They will assess the new requirements for compliance, along with standards and procedures, and make the necessary changes according to the existing programme.
  5. They will ensure compliance with the BSA/AML regulatory requirements for reporting cash transactions, cross-border shipping, and transferring currency or any other financial asset/instruments
  6. They need to investigate any suspicious activity and file the SARs when it is necessary. They also need to review the process for identifying any suspicious activity within the company
  7. They must ensure that compliance training is provided to the appropriate employees, board members, and senior management.
  8. They need to recommend the necessary resources and technology for maintaining compliance in the organisation.
  9. They must ensure that CDD processes include all the customer’s relevant data, along with the necessary documents, under the BSA compliance.

 

Why AML Compliance is Important for Insurers

Failure to comply with regulatory requirements can be disastrous for insurance companies. Breaches can lead to enforcement actions including fines, penalties and sanctions. In addition to the monetary losses, including a steep fall in stock prices in the case of a listed company, institutions would lose market reputation, which they took several years to build up.

Therefore, it is important for insurance companies to have proper compliance programmes and manage them effectively. AML compliance officers are indispensable staff for institutions as they help manage compliance programmes and mitigate compliance risk.

In the present times, when technological changes have significantly changed the financial crime landscape, institutions should make use of the services of skilled BSA officers and modern technology solutions. AML compliance software such as Tookitaki Anti-Money Laundering Suite, developed in line with changing criminal behaviour, makes the work of AML compliance officers easier and more secure. Our AML software helps mitigate emerging AML risks and improves the efficiency of compliance staff.

For more information about our AML solutions, speak to one of our experts.

 

By submitting the form, you agree that your personal data will be processed to provide the requested content (and for the purposes you agreed to above) in accordance with the Privacy Notice

success icon

We’ve received your details and our team will be in touch shortly.

In the meantime, explore how Tookitaki is transforming financial crime prevention.
Learn More About Us
Oops! Something went wrong while submitting the form.

Ready to Streamline Your Anti-Financial Crime Compliance?

Our Thought Leadership Guides

Blogs
14 Aug 2025
5 min
read

Smarter Investigations: The Rise of AML Investigation Tools in Australia

In the battle against financial crime, the right AML investigation tools turn data overload into actionable intelligence.

Australian compliance teams face a constant challenge — growing transaction volumes, increasingly sophisticated money laundering techniques, and tighter AUSTRAC scrutiny. In this environment, AML investigation tools aren’t just nice-to-have — they’re essential for turning endless alerts into fast, confident decisions.

Talk to an Expert

Why AML Investigations Are Getting Harder in Australia

1. Explosion of Transaction Data

With the New Payments Platform (NPP) and cross-border corridors, institutions must monitor millions of transactions daily.

2. More Complex Typologies

From mule networks to shell companies, layering techniques are harder to detect with static rules alone.

3. Regulatory Expectations

AUSTRAC demands timely and accurate Suspicious Matter Reports (SMRs). Delays or incomplete investigations can lead to penalties and reputational damage.

4. Resource Constraints

Skilled AML investigators are in short supply. Teams must do more with fewer people — making efficiency critical.

What Are AML Investigation Tools?

AML investigation tools are specialised software platforms that help compliance teams analyse suspicious activity, prioritise cases, and document findings for regulators.

They typically include features such as:

  • Alert triage and prioritisation
  • Transaction visualisation
  • Entity and relationship mapping
  • Case management workflows
  • Automated reporting capabilities

Key Features of Effective AML Investigation Tools

1. Integrated Case Management

Centralise all alerts, documents, and investigator notes in one platform.

2. Entity Resolution & Network Analysis

Link accounts, devices, and counterparties to uncover hidden connections in laundering networks.

3. Transaction Visualisation

Graph-based displays make it easier to trace fund flows and identify suspicious patterns.

4. AI-Powered Insights

Machine learning models suggest likely outcomes, surface overlooked anomalies, and flag high-risk entities faster.

5. Workflow Automation

Automate repetitive steps like KYC refresh requests, sanctions re-checks, and document retrieval.

6. Regulator-Ready Reporting

Generate Suspicious Matter Reports (SMRs) and audit logs that meet AUSTRAC’s requirements.

ChatGPT Image Aug 13, 2025, 12_27_28 PM

Why These Tools Matter in Australia’s Compliance Landscape

  • Speed: Fraud and laundering through NPP happen in seconds — investigations need to move just as fast.
  • Accuracy: AI-driven tools reduce false positives, ensuring analysts focus on real threats.
  • Compliance Assurance: Detailed audit trails prove that due diligence was carried out thoroughly.

Use Cases in Australia

Case 1: Cross-Border Layering Detection

An Australian bank flagged multiple small transfers to different ASEAN countries. The AML investigation tool mapped the network, revealing links to a known mule syndicate.

Case 2: Crypto Exchange Investigations

AML tools traced a high-value Bitcoin-to-fiat conversion back to an account flagged in a sanctions database, enabling rapid SMR submission.

Advanced Capabilities to Look For

Federated Intelligence

Access anonymised typologies and red flags from a network of institutions to spot emerging threats faster.

Embedded AI Copilot

Assist investigators in summarising cases, recommending next steps, and even drafting SMRs.

Scenario Simulation

Test detection scenarios against historical data before deploying them live.

Spotlight: Tookitaki’s FinCense and FinMate

FinCense integrates investigation workflows directly into its AML platform, while FinMate, Tookitaki’s AI investigation copilot, supercharges analyst productivity.

  • Automated Summaries: Generates natural language case narratives for internal and regulatory reporting.
  • Risk Prioritisation: Highlights the highest-risk cases first.
  • Real-Time Intelligence: Pulls in global typology updates from the AFC Ecosystem.
  • Full Transparency: Glass-box AI explains every decision, satisfying AUSTRAC’s audit requirements.

With FinCense and FinMate, Australian institutions can cut investigation times by up to 50% — without compromising quality.

Conclusion: From Data to Decisions — Faster

The volume and complexity of alerts in modern AML programmes make manual investigation unsustainable. The right AML investigation tools transform scattered data into actionable insights, helping compliance teams stay ahead of both criminals and regulators.

Pro tip: Choose tools that not only investigate faster, but also learn from every case — making your compliance programme smarter over time.

Smarter Investigations: The Rise of AML Investigation Tools in Australia
Blogs
13 Aug 2025
5 min
read

Smarter Defences: How Machine Learning is Transforming Fraud Detection in Philippine Banking

Fraud in banking has never been faster, smarter, or more relentless — and neither have the defences.

In the Philippines, the rapid rise of digital banking, mobile wallets, and instant payments has created unprecedented opportunities for growth — and for fraudsters. From account takeovers to synthetic identity scams, financial institutions are under constant attack. Traditional rule-based detection systems, while useful, are no longer enough. Enter machine learning (ML) — the technology redefining fraud detection by spotting suspicious activity in real time and adapting to new threats before they cause damage.

Talk to an Expert

The Growing Fraud Threat in Philippine Banking

Digital banking adoption in the Philippines has surged in recent years, driven by initiatives like the BSP’s Digital Payments Transformation Roadmap and the expansion of fintech services. While these advancements boost financial inclusion, they also open the door to fraud.

According to the Bankers Association of the Philippines, reported cyber fraud incidents have increased steadily, with phishing, account takeover (ATO), and card-not-present (CNP) fraud among the top threats.

Key trends include:

  • Instant payment exploitation: Fraudsters leveraging PESONet and InstaPay for rapid fund transfers.
  • Social engineering scams: Convincing victims to disclose personal and banking details.
  • Cross-border fraud networks: Syndicates funnelling illicit funds via multiple jurisdictions.

In this environment, speed, accuracy, and adaptability are critical — qualities where ML excels.

Why Traditional Fraud Detection Falls Short

Rule-based fraud detection systems rely on predefined scenarios (e.g., flagging transactions over a certain threshold or unusual logins from different IP addresses). While they can catch known patterns, they struggle with:

  • Evolving tactics: Fraudsters quickly adapt once they know the rules.
  • False positives: Too many alerts waste investigator time and frustrate customers.
  • Lack of contextual awareness: Rules can’t account for the nuances of customer behaviour.

This is where machine learning transforms the game.

How Machine Learning Enhances Fraud Detection

1. Pattern Recognition Beyond Human Limits

ML models can process millions of transactions in real time, identifying subtle anomalies in behaviour — such as unusual transaction timing, frequency, or geolocation.

2. Continuous Learning

Unlike static rules, ML systems learn from new data. When fraudsters switch tactics, the model adapts, ensuring defences stay ahead.

3. Reduced False Positives

ML distinguishes between legitimate unusual behaviour and true fraud, cutting down on unnecessary alerts. This not only saves resources but improves customer trust.

4. Predictive Capability

Advanced algorithms can predict the likelihood of a transaction being fraudulent based on historical and behavioural data, enabling proactive intervention.

ChatGPT Image Aug 13, 2025, 12_05_50 PM

Key Machine Learning Techniques in Banking Fraud Detection

Supervised Learning

Models are trained using labelled datasets — past transactions marked as “fraud” or “legitimate.” Over time, they learn the characteristics of fraudulent activity.

Unsupervised Learning

Used when there’s no labelled data, these models detect outliers and anomalies without prior examples, ideal for spotting new fraud types.

Reinforcement Learning

The system learns by trial and error, optimising decision-making as it receives feedback from past outcomes.

Natural Language Processing (NLP)

NLP analyses unstructured data such as emails, chat messages, or KYC documents to detect potential fraud triggers.

Real-World Fraud Scenarios in the Philippines Where ML Makes a Difference

  1. Account Takeover (ATO) Fraud – ML flags login attempts from unusual devices or geolocations while analysing subtle session behaviour patterns.
  2. Loan Application Fraud – Models detect inconsistencies in credit applications, cross-referencing applicant data with external sources.
  3. Payment Mule Detection – Identifying suspicious fund flows in real time, such as rapid inbound and outbound transactions in newly opened accounts.
  4. Phishing-Driven Transfers – Correlating unusual fund movement with compromised accounts reported across multiple banks.

Challenges in Implementing ML for Fraud Detection in the Philippines

  • Data Quality and Availability – ML models need vast amounts of clean, structured data. Gaps or inaccuracies can reduce effectiveness.
  • Regulatory Compliance – BSP regulations require explainability in AI models; “black box” ML can be problematic without interpretability tools.
  • Talent Gap – Limited availability of data science and ML experts in the local market.
  • Integration with Legacy Systems – Many Philippine banks still run on legacy infrastructure, complicating ML deployment.

Best Practices for Deploying ML-Based Fraud Detection

1. Start with a Hybrid Approach

Combine rule-based and ML models initially to ensure smooth transition and maintain compliance.

2. Ensure Explainability

Use explainable AI (XAI) frameworks so investigators and regulators understand why a transaction was flagged.

3. Leverage Federated Learning

Share intelligence across institutions without exposing raw data, enhancing detection of cross-bank fraud schemes.

4. Regular Model Retraining

Update models with the latest fraud patterns to stay ahead of evolving threats.

5. Engage Compliance Early

Work closely with risk and compliance teams to align ML use with BSP guidelines.

The Tookitaki Advantage: The Trust Layer to Fight Financial Crime

Tookitaki’s FinCense platform is built to help Philippine banks combat fraud and money laundering with Agentic AI — an advanced, explainable AI framework aligned with global and local regulations.

Key benefits for fraud detection in banking:

  • Real-time risk scoring on every transaction.
  • Federated intelligence from the AFC Ecosystem to detect emerging fraud typologies seen across the region.
  • Lower false positives through adaptive models trained on both local and global data.
  • Explainable decision-making that meets BSP requirements for transparency.

By combining advanced ML techniques with collaborative intelligence, FinCense gives banks in the Philippines the tools they need to protect customers, meet compliance standards, and reduce operational costs.

Conclusion: Staying Ahead of the Curve

Fraudsters in the Philippines are becoming more sophisticated, faster, and harder to trace. Relying on static, rules-only systems is no longer an option. Machine learning empowers banks to detect fraud in real time, reduce false positives, and adapt to ever-changing threats — all while maintaining compliance.

For institutions aiming to build trust in a rapidly digitising market, the path forward is clear: invest in ML-powered fraud detection now, and make it a core pillar of your risk management strategy.

Smarter Defences: How Machine Learning is Transforming Fraud Detection in Philippine Banking
Blogs
13 Aug 2025
5 min
read

Stopping Fraud in Its Tracks: The Future of Transaction Fraud Detection in Singapore

Fraud doesn’t knock—it slips through unnoticed until it’s too late.

As digital payments accelerate across Singapore, financial institutions face a mounting challenge: detecting fraudulent transactions in real time, without slowing down legitimate users. From phishing scams and mule accounts to synthetic identities and account takeovers, transaction fraud has become smarter, faster, and harder to catch.

This blog explores how transaction fraud detection is evolving in Singapore, the gaps still present in legacy systems, and how AI-driven tools are helping financial institutions fight back.

Talk to an Expert

Why Transaction Fraud Detection Is Critical in Singapore

Singapore’s position as a fintech hub comes with exposure to increasingly sophisticated fraud schemes. According to the Singapore Police Force, scam-related crimes in 2024 accounted for over 70% of all crimes reported, with transaction fraud and unauthorised transfers making up a large portion of the losses.

The government’s drive for real-time payments — from PayNow to FAST — adds pressure on banks and fintechs to detect fraud instantly, without delaying genuine transactions.

Missed fraud isn’t just a financial risk — it erodes trust. And in Singapore’s tightly regulated environment, trust is everything.

Types of Transaction Fraud Facing Financial Institutions

Understanding the tactics fraudsters use is the first step toward stopping them. In Singapore, common forms of transaction fraud include:

1. Account Takeover (ATO)

Fraudsters use stolen credentials to gain control over an account and initiate transfers, bill payments, or cash withdrawals — often within minutes.

2. Social Engineering Scams

Victims are tricked into authorising payments themselves under false pretences — for example, investment scams, job scams, or fake relationships.

3. Money Muling

Fraudsters use mule accounts — often belonging to unsuspecting individuals — to route stolen or laundered funds through multiple hops.

4. Real-Time Payment Exploits

With instant transfer systems, once funds are sent, they’re often impossible to recover. Fraudsters exploit this urgency and invisibility.

5. Business Email Compromise (BEC)

Corporate payments are manipulated through phishing or spoofing attacks, redirecting funds to illicit accounts under false vendor names.

ChatGPT Image Aug 13, 2025, 11_14_07 AM

Challenges in Transaction Fraud Detection

Despite investment in fraud controls, many Singaporean financial institutions still face persistent roadblocks:

1. High False Positives

Basic rules-based systems raise alerts for normal user behaviour, overwhelming fraud teams and increasing friction for genuine customers.

2. Lack of Real-Time Detection

Many systems rely on batch processing or delayed scoring, leaving gaps for fraudsters to exploit instant payment rails.

3. Inability to Detect Novel Patterns

Fraudsters constantly change tactics. Systems that only recognise known fraud signatures are easily bypassed.

4. Poor Cross-Border Visibility

Singapore is deeply integrated into global financial flows. A lack of insight into transaction trails beyond borders makes it harder to detect layered laundering and syndicated fraud.

What Effective Transaction Fraud Detection Looks Like Today

Modern fraud detection is about being predictive, not just reactive. Here's what best-in-class solutions offer:

AI + Machine Learning

Rather than using only static rules, intelligent systems learn from historical patterns, adapt to new behaviours, and improve accuracy over time.

Behavioural Profiling

These systems build user profiles based on login patterns, spending habits, device data, and more — flagging anything outside the norm in real time.

Network Analysis

Sophisticated fraud often involves mule networks or linked entities. Graph analysis helps identify suspicious linkages between accounts.

Federated Intelligence Sharing

Platforms like Tookitaki’s AFC Ecosystem allow institutions to benefit from typologies and red flags contributed by others — without sharing sensitive data.

Explainable AI

Regulators require transparency. Solutions must explain why a transaction was flagged, not just that it was.

How Tookitaki Is Powering Smarter Fraud Detection

Tookitaki’s FinCense platform is purpose-built to detect transaction fraud in real time. Here’s how it helps Singapore-based institutions stay ahead:

  • Agentic AI Framework: Modular AI agents continuously scan transactions, user behaviour, and risk context to identify fraud patterns — even emerging ones.
  • Scenario-Based Detection: Leverages real-world fraud scenarios from the AFC Ecosystem, including scams unique to Southeast Asia like fake job recruitment and QR-enabled mule layering.
  • Real-Time Simulation & Threshold Optimisation: Before deploying rules, institutions can simulate detection impact to reduce false positives.
  • Smart Disposition Engine: AI-generated summaries assist investigators by surfacing key risk insights for flagged transactions.
  • Federated Learning: Combines privacy-preserving AI with community-sourced intelligence for faster, more adaptive detection.

Whether you’re a digital bank, a payment gateway, or a traditional financial institution, FinCense provides the flexibility, speed, and accuracy needed for the Singaporean fraud landscape.

Key Strategies for Singaporean Firms to Strengthen Fraud Defences

1. Upgrade From Rule-Based to Hybrid Systems

A combination of dynamic rules and machine learning provides greater precision and adaptability.

2. Focus on Early Detection

Identify mule accounts, layered transfers, and behaviour anomalies before the fraud is completed.

3. Enable Seamless Analyst Workflows

Reduce alert fatigue with AI-driven prioritisation and investigation summaries.

4. Join Intelligence-Sharing Networks

Collaborate with platforms like the AFC Ecosystem to keep up with evolving fraud typologies.

5. Design for Real-Time Action

Ensure that fraud decisions can be made in milliseconds — and tie detection systems directly to block/hold actions.

Conclusion: Fraudsters Are Getting Smarter. Are You?

In Singapore’s fast-moving financial ecosystem, transaction fraud detection is no longer just a compliance function — it’s a competitive advantage.

Banks and fintechs that invest in modern, intelligent fraud prevention are not only protecting their bottom line — they’re protecting their brand and customer relationships.

📌 The future of fraud detection is proactive, predictive, and powered by community-led intelligence. Don’t just keep up — get ahead.

Stopping Fraud in Its Tracks: The Future of Transaction Fraud Detection in Singapore