Compliance Hub

50 Shocking Statistics About Money Laundering and Cryptocurrency

Site Logo
Tookitaki
18 Aug 2020
6 min
read

Money laundering is a financial crime that relies on stealth and flying under the radar. Understandably, detection poses a significant challenge in this field.  Historians think that the term money laundering originated from the Italian mafia, specifically by Al Capone. During the 1920s and 30s, Capone and his associates would buy laundromats (where ‘laundering’ comes from) to mask profits made from illegal activities such as prostitution and selling bootlegged liquor. The statistics about money laundering are difficult to assess given the secretive nature of the crime.

Money laundering legislation has been created and implemented in countries all over the globe, and global organisations such as the United Nations Office on Drugs and Crime (UNODC) and the Financial Action Task Force (FATF) regulate the global banking industry’s activities. Yet money laundering remains a threat and a phenomenon that is hard to track. Despite its incognito nature, there are some statistical insights available on this global crime that costs the world around USD 2 trillion every year.

Statistics on Money Laundering

  • In 2009, the estimated global success rate of money laundering controls was a mere 0.2% (according to the UN and US State Department)
  • Authorities intercepted USD 3.1 billion worth of laundered money in 2009. Over 80% of which was seized in North America (UN estimate)
  • The estimated global spending on AML compliance-related fines was USD 10 Billion in 2014.
  • Globally, banks have spent an estimated USD 321 billion in fines since 2008 for failing to comply with regulatory standards, facilitating money laundering, terrorist financing, and market manipulation.
  • In 2019, banks paid more than USD 6.2 billion in AML fines globally.
  • FIU has categorised 9,500 non-banking financial companies (out of an estimated 11,500 registered) as ‘high-risk financial institutions’, indicating non-compliance, as of 2018.
  • As of 2020, the USA was deemed compliant for 9 and largely compliant for 22 out of 40 FATF recommendations.
  • In India as of 2018, approximately 884 companies are on high alert for money laundering and assets worth INR 50 billion. They are being probed under the Prevention of Money Laundering Act (PMLA 2002).
  • From 2016-17, searches were conducted in money laundering 161 cases filed under PMLA
  • As of 2018, India was deemed compliant for 4 of the core 40 +9 FATF recommendations, largely compliant for 25, and non-compliant for 5 out of 6 core recommendations.
  • The estimated amount of total money laundered annually around the world is 2-5% of the global GDP (USD 800 Billion – 2 trillion)
  • In 2009, total spending on illicit financial activities like money laundering was 3.6% of the global GDP, with USD 1.6 trillion laundered (according to the UNODC)
  • Over 200,000 cases of money laundering are reported to the authorities in the UK annually.
  • About 50% of cases of money laundering reported in Latin America are by financial firms.
  • According to the government of India, approximately USD 18 billion is lost through money laundering each year.
  • A 1996 report published by Chulalongkorn University in Bangkok estimated that a figure equal to 15% of the country’s GDP ($28.5 billion) was illegally laundered money.
  • In the UK, the total penalties from June 2017 to April 2019 on anti-money laundering non-compliance was £241,233,671.
  • Iran stands at the top of the Anti-Money Laundering (AML) risk index with a score of 8.6, the world’s highest. Afghanistan comes second with a score of 8.38, while Guinea-Bissau comes 3rd with a score of 8.35.
  • Mexican drug cartels launder at least USD 9 billion (5% of the country’s GDP) each year
  • Money laundering takes up about 1.2% of the EU’s total GDP.
  • Completing the Know Your Customer (KYC) process usually costs banks around USD 62 million.
  • 88% of consumers say their perception of a business is improved when a business invests in the customer experience, especially finance and security.

 

 

Money-Laundering-via-Cryptocurrencies--All-You-Need-to-Know

Cryptocurrency Money Laundering Statistics

The cryptocurrency space presented an unexplored and unfamiliar territory to AML regulators and still remains so in some parts of the world. However, many governments such as Japan, Singapore, Malaysia, China, the U.S.A, and Spain, among others, have been actively regulating the crypto market in their countries.

While crypto regulations for anti-money laundering are relatively new, some statistical insights into this newly formed industry are available.

  • Europol (financial analyst agency) claims that the Bitcoin mixer laundered 27,000 Bitcoins (valued at over $270 Million), since its launch in May 2018.
  • Research shows that the total amount of money laundered through Bitcoin since its inception in 2009 is about USD 4.5 Billion.
  • 97% of ransomware catalogued in 2019 demanded payment in Bitcoin.
  • The UK-based crypto firm, Bottle Pay ceased operations in 2019 due to the regulatory requirements prescribed by the 5th Anti-Money Laundering Directive. The firm closed down operations after raising USD 2 million because it did not agree with the KYC requirements outlined in 5AMLD.
  • In the first five months of 2020, crypto thefts, hacks, and frauds totalled $1.36 billion, indicating 2020 could see the greatest total amount stolen in crypto crimes exceeding 2019’s $4.5 billion.
  • The global average of direct criminal funds received by exchanges dropped 47% in 2019. (Darknet marketplace)
  • In the first five months of 2020, crypto thefts, hacks, and frauds totalled $1.36 billion.
  • Though the total value collected by criminals from crypto crimes is among the highest recorded, the global average of criminal funds sent directly to exchanges dropped 47% in 2019.
  • 57% of FATF-approved Virtual Asset Service Providers (VASPs) still have weak, porous anti-money laundering measures. Their AML solutions and KYC processes fall at the weak end of the required standard.
  • Japan reported over 7,000 cases of money laundering via cryptocurrencies in 2018.
  • Only 0.17% of funds received by crypto exchanges in 2019 were sent directly from criminal sources.

 

aml-software-1

Anti-money Laundering Software Market

With money laundering methods evolving at a rapid pace and regulatory compliance requirements adapting to combat them, AML Software has become an indispensable part of any institution’s Anti-money Laundering process. The Regtech market for AML software is growing at a strong rate.

  • The global anti-money laundering software market was valued at $879.0 million in 2017 and is projected to reach $2,717.0 million by 2025.
  • 44% of banks reported an increase of 5–10% in their AML and BSA budgets and are expected to increase their spending by 11-20% in 2017.

 

Fraud-1-1

Fraud

Another financial crime that is quite a common occurrence, fraud also poses a problem for financial institutions and their clients across the world. Fraud and money laundering have an unseen connection.

Money that is acquired through fraudulent means often needs to be laundered to be usable and accepted in the mainstream economy. Fraud and money laundering may not seem related at first sight, but they certainly are. Here are a few statistics on fraud across the world.

  • 47% of Americans have had their card information compromised at some point and have been victim to credit card fraud
  • 21% of Americans have faced debit card fraud
  • Credit card fraud amounts to around USD 22 billion globally
  • 47% of the world’s credit card fraud cases occur in the US
  • 69% of scams occur when the consumer is approached via telephone or email
  • Credit card fraud increased by 18.4% last year and is on the rise
  • Identity theft makes up 14.8% of all reported fraud cases
  • Worldwide financial institutions paid fines amounting to USD 24.26 billion last year due to payment fraud
  • Identity theft represents about 14.8 per cent of consumer fraud complaints with reports of 444,602 reported cases in 2018
  • Identity fraudsters robbed USD16 billion from 12.7 million U.S. consumers in 2014
  • They stole USD18 billion in the U.S. in 2013
  • The total number of cases of fraud in 2019 was 650,572
  • The end of July 2020 showed over 150,000 COVID-19-related fraud threats
  • In 2019, almost 165 million records containing personal data were exposed through fraud-related data breaches
  • Identity theft is most common for consumers aged between 20-49 years

 

To know how Tookitaki combats money laundering and other financial crimes with cutting-edge technology, speak to one of our experts today. 

 

By submitting the form, you agree that your personal data will be processed to provide the requested content (and for the purposes you agreed to above) in accordance with the Privacy Notice

success icon

We’ve received your details and our team will be in touch shortly.

In the meantime, explore how Tookitaki is transforming financial crime prevention.
Learn More About Us
Oops! Something went wrong while submitting the form.

Ready to Streamline Your Anti-Financial Crime Compliance?

Our Thought Leadership Guides

Blogs
02 Sep 2025
5 min
read

Cracking the Code: How Money Laundering Investigation Software Empowers Philippine Banks

Every suspicious transaction is a clue — and the right software helps connect the dots.

In the Philippines, banks and financial institutions are under intensifying pressure to investigate suspicious activities swiftly and accurately. The country’s exit from the FATF grey list in 2024 has raised expectations: financial institutions must now prove that their money laundering investigation software is not just ticking compliance boxes but truly effective in detecting, tracing, and reporting illicit flows.

What Is Money Laundering Investigation Software?

Money laundering investigation software is a specialised technology platform that enables banks and other covered entities to:

  • Trace suspicious transactions across accounts, products, and channels.
  • Investigate customer profiles and uncover hidden relationships.
  • Automate case management for Suspicious Transaction Reports (STRs).
  • Collaborate securely with compliance teams and regulators.

The goal is to turn raw transactional data into actionable intelligence that helps compliance officers identify real risks while reducing wasted effort on false positives.

Talk to an Expert

Why It Matters for the Philippines

The Philippine financial system is highly exposed to money laundering threats due to:

  • Large remittance inflows from overseas workers.
  • Cross-border risks from porous regional payment networks.
  • High cash usage still prevalent in many sectors.
  • Digital transformation of banks and fintechs, increasing the attack surface.

With stricter Bangko Sentral ng Pilipinas (BSP) and Anti-Money Laundering Council (AMLC) oversight, institutions need tools that deliver both accuracy and transparency in investigations.

Limitations of Manual or Legacy Investigations

Traditionally, investigations have relied on manual processes or outdated case management tools. These approaches struggle with:

  • Overwhelming volumes of alerts — compliance teams drowning in cases triggered by rigid rules.
  • Siloed data — transaction, KYC, and external intelligence scattered across systems.
  • Limited forensic capability — difficulty connecting patterns across multiple institutions or geographies.
  • Slow turnaround times — risking regulatory penalties for delayed STR filing.

Key Features of Modern Money Laundering Investigation Software

1. Advanced Case Management

Centralised dashboards consolidate alerts, supporting documentation, and investigator notes in one secure interface.

2. AI-Powered Alert Triage

Machine learning reduces false positives and prioritises high-risk cases, helping teams focus on genuine threats.

3. Network and Relationship Analysis

Software visualises connections between accounts, entities, and transactions, uncovering hidden links in laundering networks.

4. Integrated KYC/CDD Data

Seamless integration with KYC data helps validate customer profiles and identify inconsistencies.

5. Regulatory Reporting Automation

Streamlined generation and submission of STRs and CTRs ensures timeliness and accuracy in compliance reporting.

ChatGPT Image Sep 1, 2025, 10_29_49 PM

How It Helps Detect Common Money Laundering Typologies in the Philippines

  1. Layering through Remittance Channels – Detecting unusual fund flows structured across multiple remittance outlets.
  2. Use of Shell Companies – Linking transactions to front businesses with no legitimate operations.
  3. Casino Laundering – Identifying large buy-ins followed by minimal play and rapid cash-outs.
  4. Trade-Based Money Laundering (TBML) – Flagging mismatched invoices and payments tied to cross-border shipments.
  5. Terror Financing Risks – Tracing small but frequent transfers tied to high-risk geographies or individuals.

Regulatory Expectations for Investigation Tools

The BSP and AMLC require that institutions’ investigation processes are:

  • Risk-based and proportionate to customer and product profiles.
  • Documented and auditable for regulatory inspection.
  • Efficient in STR filing, avoiding delays and inaccuracies.
  • Transparent — investigators must explain why a case was escalated or closed.

Here, software with explainable AI capabilities provides the critical balance between automation and accountability.

Challenges in Adopting Investigation Software in the Philippines

  • Integration with legacy core banking systems remains a technical hurdle.
  • Shortage of skilled investigators who can interpret complex analytics outputs.
  • Budget constraints for rural banks and smaller fintechs.
  • Cultural resistance to shifting from manual investigations to AI-assisted tools.

Best Practices for Effective Deployment

1. Combine Human Expertise with AI

Investigators should use AI to enhance decision-making, not replace human judgment.

2. Invest in Training

Equip compliance officers with the skills to interpret AI outputs and relationship graphs.

3. Prioritise Explainability

Adopt platforms that clearly explain the rationale behind flagged transactions.

4. Collaborate Across Institutions

Leverage industry-wide typologies to strengthen investigations against cross-bank laundering.

5. Align with BSP’s Risk-Based Supervision

Ensure investigation workflows adapt to customer risk profiles and sector-specific risks.

The Tookitaki Advantage: Smarter Investigations with FinCense

Tookitaki’s FinCense is designed as a trust layer for financial institutions in the Philippines, delivering next-generation investigation capabilities.

Key differentiators:

  • Agentic AI-powered investigations that guide compliance officers step by step.
  • Smart Disposition engine that auto-generates investigation summaries for STRs.
  • Federated intelligence from the AFC Ecosystem — giving access to 200+ expert-contributed scenarios and typologies.
  • Explainable outputs to satisfy BSP and global regulators.

By automating repetitive tasks and providing deep forensic insight, FinCense helps Philippine banks reduce investigation time, cut costs, and strengthen compliance.

Conclusion: Investigations as a Strategic Advantage

Money laundering investigation software is no longer a luxury — it’s essential for Philippine banks navigating a fast-evolving financial crime landscape. By embracing AI-powered platforms, institutions can investigate smarter, report faster, and stay compliant with confidence.

In a digital-first future, the banks that treat investigations not just as a regulatory burden but as a strategic advantage will be the ones that win lasting customer trust.

Cracking the Code: How Money Laundering Investigation Software Empowers Philippine Banks
Blogs
02 Sep 2025
5 min
read

AML CFT Software in Australia: Building Stronger Defences Against Financial Crime

With financial crime on the rise, Australian institutions need AML CFT software that combines real-time detection, regulatory compliance, and adaptability.

Financial crime is evolving rapidly in Australia. Fraudsters are exploiting the New Payments Platform (NPP), cross-border remittances, and digital banking to move illicit funds faster than ever. At the same time, terrorism financing threats remain a concern, particularly as criminals seek to disguise transactions in complex layers across jurisdictions.

To address these risks, Australian financial institutions are increasingly investing in AML CFT software. These platforms help detect and prevent money laundering and terrorism financing while keeping institutions aligned with AUSTRAC’s expectations. But not all software is created equal. The right solution can reduce costs, improve detection accuracy, and build trust, while the wrong choice can leave institutions exposed to penalties and reputational damage.

Talk to an Expert

What is AML CFT Software?

AML CFT software is technology designed to help financial institutions comply with Anti-Money Laundering (AML) and Counter-Terrorism Financing (CFT) regulations. It integrates processes across customer onboarding, transaction monitoring, sanctions screening, investigations, and reporting.

Key functions include:

  • KYC and Customer Due Diligence (CDD): Verifying and risk-scoring customers.
  • Transaction Monitoring: Detecting suspicious or unusual activity.
  • Sanctions and PEP Screening: Checking customers and transactions against lists.
  • Case Management: Investigating and resolving alerts.
  • Regulatory Reporting: Generating Suspicious Matter Reports (SMRs) and Threshold Transaction Reports (TTRs).

Why AML CFT Software Matters in Australia

1. AUSTRAC’s Strict Expectations

AUSTRAC enforces the AML/CTF Act 2006, which applies to all reporting entities, from major banks to remittance providers. Institutions must not only have controls in place but also prove that those controls are effective.

2. Real-Time Payments Challenge

With NPP enabling instant transactions, legacy batch monitoring systems are no longer sufficient. AML CFT software must work in real time.

3. Complex Laundering Typologies

Criminals use shell companies, trade-based money laundering, and mule networks to disguise illicit funds. Advanced detection capabilities are needed to uncover these patterns.

4. Reputational Risk

Non-compliance does not only result in penalties but also erodes customer trust. High-profile cases in Australia have shown how reputational damage can be long-lasting.

5. Cost of Compliance

Compliance costs are rising across the industry. Institutions need software that reduces false positives, automates investigations, and improves efficiency.

ChatGPT Image Sep 1, 2025, 05_46_30 PM

Core Features of Effective AML CFT Software

1. Real-Time Transaction Monitoring

  • Detects suspicious activity in milliseconds.
  • Includes velocity checks, location-based alerts, and anomaly detection.

2. AI and Machine Learning Models

  • Identify unknown patterns beyond static rules.
  • Reduce false positives by distinguishing unusual but legitimate behaviour.

3. Integrated KYC/CDD

  • Automates onboarding checks.
  • Screens for politically exposed persons (PEPs), sanctions, and adverse media.

4. Case Management

  • Centralises investigations.
  • Allows analysts to track, escalate, and resolve alerts efficiently.

5. Regulatory Reporting Tools

  • Generates SMRs and TTRs in AUSTRAC-compliant formats.
  • Maintains audit trails for regulator reviews.

6. Explainability

  • Provides clear reason codes for each alert.
  • Ensures transparency for regulators and internal stakeholders.

Challenges in Deploying AML CFT Software

  • High False Positives: Legacy systems often generate alerts that waste investigator time.
  • Integration Issues: Complex core banking systems may not integrate smoothly.
  • Lack of Local Expertise: Global vendors without knowledge of AUSTRAC standards may fall short.
  • Evolving Criminal Methods: Criminals innovate constantly, requiring frequent updates to detection typologies.

Best Practices for Choosing AML CFT Software

  1. Assess Real-Time Capabilities: Ensure the software can handle NPP transaction speed.
  2. Evaluate AI Strength: Look for adaptive models that reduce false positives.
  3. Check AUSTRAC Alignment: Confirm local compliance support and reporting tools.
  4. Demand Transparency: Avoid black-box AI. Choose software with explainable decision-making.
  5. Prioritise Scalability: Make sure the solution can grow with your institution.
  6. Ask for Local References: Vendors proven in Australia are safer bets.

Case Example: Community-Owned Banks Taking the Lead

Community-owned banks like Regional Australia Bank and Beyond Bank have adopted modern AML CFT platforms to strengthen compliance and fraud prevention. Their experiences show that even mid-sized institutions can implement advanced technology to stay ahead of criminals and regulators. These banks demonstrate that AML CFT software is not just for Tier-1 players but for any institution that values trust and resilience.

Spotlight: Tookitaki’s FinCense

Among AML CFT software providers, Tookitaki stands out for its innovative approach. Its flagship platform, FinCense, offers end-to-end compliance and fraud prevention capabilities.

  • Real-Time Monitoring: Detects suspicious activity instantly across NPP and cross-border corridors.
  • Agentic AI: Continuously adapts to new money laundering and terrorism financing typologies while keeping false positives low.
  • Federated Learning: Accesses real-world scenarios contributed by global experts through the AFC Ecosystem.
  • FinMate AI Copilot: Assists investigators with case summaries and regulator-ready reports.
  • Full AUSTRAC Compliance: SMRs, TTRs, and detailed audit trails built into the system.
  • Cross-Channel Coverage: Monitors transactions across banking, remittance, wallets, and crypto.

With FinCense, institutions in Australia can stay ahead of evolving threats while managing compliance costs effectively.

The Future of AML CFT Software in Australia

1. PayTo and Overlay Services

As NPP expands with PayTo, new fraud and money laundering typologies will emerge. Software must adapt quickly.

2. Deepfake and AI-Powered Scams

Criminals are already using deepfakes to commit fraud. Future AML software will need to incorporate the detection of synthetic identities and manipulated media.

3. Cross-Border Intelligence Sharing

Closer coordination with ASEAN markets will be key, given Australia’s financial links to the region.

4. Collaborative Compliance Models

Federated learning and shared fraud databases will become standard, enabling institutions to collectively fight financial crime.

5. Cost Efficiency Focus

As compliance costs rise, automation and AI will play an even greater role in reducing investigator workload.

Conclusion

In Australia’s fast-moving financial environment, AML CFT software is no longer optional. It is the backbone of compliance and a critical shield against money laundering and terrorism financing. Institutions that rely on outdated systems risk falling behind criminals and regulators alike.

The right AML CFT platform delivers more than compliance. It strengthens customer trust, reduces costs, and future-proofs institutions for the risks ahead. Community-owned banks like Regional Australia Bank and Beyond Bank are showing the way, proving that with the right technology, even mid-sized players can lead in compliance innovation.

Pro tip: When evaluating AML CFT software, prioritise real-time monitoring, AI adaptability, and AUSTRAC alignment. These are the non-negotiables for resilience in the NPP era.

AML CFT Software in Australia: Building Stronger Defences Against Financial Crime
Blogs
01 Sep 2025
5 min
read

Enterprise Fraud Detection in Singapore: Building a Smarter Line of Defence

Fraud may wear many faces. But for enterprises, the cost of not catching it is always the same: reputation, revenue, and regulatory risk.

In Singapore’s fast-paced, high-trust economy, enterprise fraud has evolved far beyond simple scams. Whether it's internal collusion, digital payment abuse, cross-border laundering, or supplier impersonation, organisations need to rethink how they detect and prevent fraud at scale.

This blog explores how enterprise fraud detection is transforming in Singapore, what makes it different from consumer-level security, and what leading firms are doing to stay ahead.

Talk to an Expert

What Is Enterprise Fraud Detection?

Unlike individual-focused fraud detection (such as stolen credit cards), enterprise fraud detection is designed to uncover multi-layered, systemic, and often high-value fraud schemes that target businesses, financial institutions, or governments.

It includes threats such as:

  • Internal fraud (for example, expense abuse or payroll manipulation)
  • Business email compromise (BEC)
  • Procurement fraud and supplier collusion
  • Cross-channel transaction fraud
  • Laundering via corporate accounts or trade platforms

In Singapore, where enterprises increasingly operate across borders and digital channels, the attack surface for fraud is broader than ever.

Why It’s a Priority in Singapore’s Enterprise Landscape

1. High Volume, High Velocity

Singaporean enterprises operate in sectors like banking, logistics, trade, and technology. These sectors are prone to complex, high-volume transactions that make detecting fraud challenging.

2. Cross-Border Risks

As a regional hub, many Singaporean businesses handle payments, contracts, and supply chains that cross jurisdictions. This creates blind spots that fraudsters exploit.

3. Regulatory Pressure

The Monetary Authority of Singapore (MAS) has increased scrutiny on fraud resilience, cyber threats, and risk controls. This is especially true after high-profile scams and laundering cases.

4. Digital Transformation

Digital acceleration has outpaced many legacy risk controls. Fraudsters take advantage of the gaps between systems, departments, or verification processes.

Key Features of a Strong Enterprise Fraud Detection System

1. Multi-Channel Monitoring

From bank transfers to invoices, card payments, and internal logs, enterprise systems must analyse all channels in one place.

2. Real-Time Detection and Response

Enterprise fraud does not wait. Real-time flagging, blocking, and escalation are critical, especially for high-value transactions.

3. Risk-Based Scoring

Modern platforms use behavioural analytics and contextual data to assign risk scores. This allows teams to prioritise the most dangerous threats.

4. Cross-Entity Link Analysis

Detecting hidden relationships between users, accounts, suppliers, or geographies is key to uncovering organised schemes.

5. Case Management and Forensics

Built-in case tracking, audit logs, and investigator dashboards are vital for compliance, audit defence, and root cause analysis.

Challenges Faced by Enterprises in Singapore

Despite growing awareness, many Singaporean enterprises struggle with:

1. Siloed Systems

Fraud signals are spread across payment, HR, ERP, and CRM systems. This makes unified detection difficult.

2. Limited Intelligence Sharing

Few enterprises share typologies, even within the same sector. This limits collective defence.

3. Outdated Rule Engines

Many systems still rely on static thresholds or manual checks. These systems miss complex or new fraud patterns.

4. Overworked Compliance Teams

High alert volumes and false positives lead to fatigue and longer investigation times.

ChatGPT Image Aug 31, 2025, 03_45_20 PM

How AI Is Reshaping Enterprise Fraud Detection

The rise of AI-powered, scenario-based systems is helping Singaporean enterprises go from reactive to predictive fraud defence.

✅ Behavioural Anomaly Detection

Rather than just flagging large transactions, AI looks for subtle deviations like login location mismatches or unusual approval flows.

✅ Federated Learning

Tookitaki’s FinCense platform allows enterprises to learn from other organisations’ fraud patterns without sharing sensitive data.

✅ AI Copilots for Investigators

Tools such as FinMate assist human teams by surfacing key evidence, suggesting next steps, and reducing investigation time.

✅ End-to-End Visibility

Modern systems integrate with finance, HR, procurement, and customer systems to give a complete fraud view.

How Singaporean Enterprises Are Using Tookitaki for Fraud Detection

Leading organisations across banking, fintech, and commerce are turning to Tookitaki to future-proof their fraud defence. Here’s why:

  • Scenario-Based Detection Engine
    FinCense uses over 200 expert-curated typologies to identify real-world fraud, including invoice layering and ghost vendor networks.
  • Real-Time, AI-Augmented Monitoring
    Transactions are scored instantly, and high-risk cases are escalated before damage is done.
  • Modular Agents for Each Risk Type
    Enterprises can plug in relevant AI agents such as those for trade fraud, ATO, or BEC without overhauling legacy systems.
  • Audit-Ready Case Trails
    Every flagged transaction is supported by AI-generated narratives and documentation, simplifying compliance reviews.

Best Practices for Implementing Enterprise Fraud Detection in Singapore

  1. Start with a Risk Map
    Identify your fraud-prone workflows. These might include procurement, payments, or expense claims.
  2. Break Down Silos
    Integrate risk signals across departments to build a unified fraud view.
  3. Use Real-World Scenarios
    Rely on fraud typologies tailored to Singapore and Southeast Asia rather than generic patterns.
  4. Enable Human and AI Collaboration
    Let your systems detect, but your people decide, with AI assistance to speed up decisions.
  5. Continuously Improve with Feedback Loops
    Use resolved cases to train your models and refine detection rules.

Conclusion: Enterprise Fraud Requires Enterprise-Grade Solutions

Enterprise fraud is growing smarter. Your defences should too.

In Singapore’s complex and high-stakes business environment, fraud detection cannot be piecemeal or reactive. Enterprises that invest in AI-powered, real-time, collaborative solutions are not just protecting their bottom line. They are building operational resilience and stakeholder trust.

The future of enterprise fraud detection lies in intelligence-led, ecosystem-connected platforms. Now is the time to upgrade.

Enterprise Fraud Detection in Singapore: Building a Smarter Line of Defence