Compliance Hub

What is Money Laundering Act?

Site Logo
Tookitaki
16 Mar 2021
5 min
read

What is the Money Laundering Act?

What is the Money Laundering Act? Money laundering refers to the act of sneaking “dirty” money obtained through criminal activities through seemingly legitimate channels, as a way of disguising the true source of the funds. Money laundering has a few key sources, including organized crime, white-collar offences, terrorist activities, and drug smuggling.

Since money laundering poses a massive risk to the global economy, such as draining a large number of funds in addition to funding criminal activities, combatting it is essential to the international community. That’s the reason why there are several national, international, and regional bodies that monitor and regulate money laundering.

These organizations, such as the Financial Action Task Force (FATF) and the United Nations Office on Drugs and Crime (UNODC), draft and implement AML US laws such as money laundering acts and guidelines that financial institutions must comply with. These refer to a set of processes and procedures institutions must implement in order to prevent and promptly catch financial crime or any illegal fiscal activity. If companies do not follow these regulations, they must pay hefty non-compliance fines.

Money Laundering Act (1986)

What is the Money Laundering Act? Globally, numerous laws and legislations have been passed with the intention to prevent money laundering and punish the perpetrators of this illegal activity. Initially, these laws were drafted to combat the mafia and other elements of organized crime, though, over time, the focus shifted to curbing drug smuggling and, later, anti-terrorism.

In the USA, the first such law was The Bank Secrecy Act (BSA), which was passed in the 1970s. The Act refers to a collection of laws that require financial institutions to report suspicious transactions to the USA Department of Treasury. Financial institutions could either have reason to believe that the money is related to criminal activity through their client risk assessments, or could track clients who appear to avoid BSA reporting requirements.

What is the Money Laundering Act? The Money Laundering Act (1986) restricts people from engaging in financial transactions with funds obtained through criminal activities. This includes the transferring of money from one private individual to another. The Money Laundering Act (1986) was designed to make the hiding and reinvestment of illegal profits made from a criminal enterprise and profits into a new federal offence. The Money Laundering Act (1986) targets conduct that occurs after the underlying crime and is not intended to be an alternative means of punishing the crime itself.

The Annunzio-Wylie Anti-Money Laundering Act (1992) strengthened penalties for non-compliance. Review, training, and examination procedures were boosted through the Money Laundering Suppression Act (1994) and the Money Laundering and Financial Crimes Strategy Act (1998).

Money Laundering Act (1996)

Money Laundering Act (1996): Every country around the world has clearly outlined regulations pertaining to money laundering. Money Laundering Acts, such as the Money Laundering Act (1996), as amended by the Money Laundering Act (1999), and the Money Laundering Act (2001) are good examples.

What is the Money Laundering Act? Money Laundering Act (1996) was an Act to criminalise money laundering. The motive of the Money Laundering Act (1996) was to require financial institutions/firms to maintain identification procedures and record-keeping procedures. The purpose of the Money Laundering Act (1996) was also to make orders in relation to proceeds of crime and properties of offenders, to designate money laundering as an extraditable offence.

The digital age provides the perfect environment for money launderers to keep innovating new methods to commit financial crimes. That is why money laundering acts such as Money Laundering Act (1986) and the Money Laundering Act (1996) and govt regulations are subject to constant change and updates. This is especially applicable in 2020, where the AML risk due to the COVID-19 era is both new and challenging.

The PATRIOT Act

The PATRIOT Act resulted from the 9/11 terrorist attacks in the USA. This Act seeks to strengthen and expand the regulation of financial transactions and the financial market as a whole. Title II of the PATRIOT Act is referred to as the International Money Laundering Abatement and Anti-Terrorist Financing Act (2001). It focuses almost exclusively on money laundering and related issues.

The PATRIOT Act explains in detail some of the questions regarding the BSA’s applicability, as well as introducing fresh requirements. Financial institutions can often try and be “willfully blind” to illegal financial transactions taking place right within their organizations. So, the PATRIOT Act requires the creation and implementation of new and improved anti-money laundering programs that hold financial institutions accountable if money laundering does occur. The Act further mandates companies to appoint a compliance officer, draft an internal compliance policy, regularly train staff, and conduct independent audits.

It also necessitates that financial institutions implement proper Know Your Customer (KYC) procedures to verify the identity of their clients and also check them against lists of known terrorists and other criminals. These are called “forthcoming requirements,” and strengthen the BSA’s need for KC.

The PATRIOT Act and the Bank Secrecy Act provide a layer of protection to the USA’s economy and financial institutions against money laundering and other financial crimes. These laws encompass the procedure to recognize suspicious activity, flag off concerned authorities, and trigger the necessary legal action required to charge the criminals. These laws have the power to have suspicious financial institutions investigated by the Federal Reserve and the Office of the Comptroller of Currency.

There is one loophole, however. The definition of “financial institution” under both of these Acts excludes investment advisors and transfer agents. Hence, these companies are treading a thin, unregulated line of profits at the moment. Generally, though, these companies must be registered under the Investment Company Act (1940) to carry out operations.

Prevention of Money Laundering Act & Other National Money Laundering Regulations

Prevention of Money Laundering Act (2002): As mentioned earlier, all countries across the globe have regulations and laws pertaining to money laundering. India passed the Prevention of Money Laundering Act in 2002. The purpose of Prevention of Money Laundering Act: (2002) was to curb the rampant money laundering and corruption being carried out within the country. Prevention of Money Laundering Act: (2002) was enacted by the National Defense Army (NDA) government to fight against money-laundering and terrorist financing. The aim of the Prevention of Money Laundering Act was also to provide for confiscation of property derived from money-laundering. Effective from July 1, 2005, the PMLA and the Rules notified there under came into force.

They also have internal bodies to govern the finance industry, such as the Monetary Authority of Singapore, the Australian Transaction Reports and Analysis Center, the Honk Kong Monetary Authority, and the The Financial Conduct Authority (FCA) in the UK, all of which pass acts and laws regarding financial crimes within their respective jurisdiction

The European Union, too, passed two directives, EU 5AMLD and 6AMLD, in an attempt to harmonize transactions between all the member states. All of these organizations aim to regulate, track, monitor, and prevent money laundering, terrorist financing, or any other illegal activity involving money in their regions.

These bodies change and update regulations often. Indeed, the financial market and industry are in flux due to the advent of technology. So, they need to be on their toes and think one step ahead of criminals in order to outsmart them and prevent financial crimes from being committed. By doing so, they begin the process of drafting and designing AML compliance regulations and policies.

Read here to know more about the job role of an MLRO.

By submitting the form, you agree that your personal data will be processed to provide the requested content (and for the purposes you agreed to above) in accordance with the Privacy Notice

success icon

We’ve received your details and our team will be in touch shortly.

In the meantime, explore how Tookitaki is transforming financial crime prevention.
Learn More About Us
Oops! Something went wrong while submitting the form.

Ready to Streamline Your Anti-Financial Crime Compliance?

Our Thought Leadership Guides

Blogs
15 Dec 2025
6 min
read

AML Onboarding Software: Why the First Risk Decision Matters More Than You Think

Long before the first transaction is made, the most important AML decision has already been taken.

Introduction

When financial institutions talk about anti money laundering controls, the conversation usually centres on transaction monitoring, suspicious matter reports, and investigations. These are visible, measurable, and heavily scrutinised.

Yet many of the most costly AML failures begin much earlier. They start at onboarding.

Not with identity verification or document checks, but with the first risk decision. The moment a customer is accepted, classified, and assigned an initial risk profile, a long chain of downstream outcomes is set in motion. False positives, missed typologies, operational overload, and even regulatory findings often trace back to weak or overly simplistic onboarding risk logic.

This is where AML onboarding software plays a decisive role.

In the Australian context, where scams, mule recruitment, and rapid payment flows are reshaping financial crime risk, onboarding is no longer a formality. It is the first and most influential AML control.

Talk to an Expert

What AML Onboarding Software Actually Does (And What It Does Not)

Before going further, it is important to clear up a common misunderstanding.

AML onboarding software is not the same as KYC or identity verification software.

AML onboarding software focuses on:

  • Initial customer risk assessment
  • Risk classification logic
  • Sanctions and risk signal ingestion
  • Jurisdictional and product risk evaluation
  • Early typology exposure
  • Setting behavioural and transactional baselines
  • Defining how intensely a customer will be monitored after onboarding

AML onboarding software does not perform:

  • Document verification
  • Identity proofing
  • Face matching
  • Liveness checks
  • Biometric validation

Those functions belong to KYC and identity vendors. AML onboarding software sits after identity is established, and answers a different question:

What level of financial crime risk does this customer introduce to the institution?

Getting that answer right is critical.

Why Onboarding Is the First AML Risk Gate

Once a customer is onboarded, every future control is influenced by that initial risk classification.

If onboarding risk logic is weak:

  • High risk customers may be monitored too lightly
  • Low risk customers may be over monitored
  • Alert volumes inflate
  • False positives increase
  • Analysts waste time investigating benign behaviour
  • True suspicious activity is harder to spot

In contrast, strong AML onboarding software ensures that monitoring intensity, scenario selection, and alert thresholds are proportionate to risk from day one.

In Australia, this proportionality is not just good practice. It is a regulatory expectation.

Australia’s Unique AML Onboarding Challenges

AML onboarding in Australia faces a set of challenges that differ from many other markets.

1. Scam driven customer behaviour

Many customers who later trigger suspicious activity are not criminals. They are victims. Investment scams, impersonation scams, and romance scams often begin before the first suspicious transaction occurs.

Onboarding risk logic must therefore consider vulnerability indicators and behavioural context, not just static attributes.

2. Mule recruitment through everyday channels

Social media, messaging platforms, and job advertisements are used to recruit mules who appear ordinary at onboarding. Without intelligent risk assessment, these accounts enter the system with low monitoring intensity.

3. Real time payment exposure

With NPP, there is little margin for error. Customers incorrectly classified as low risk can move funds instantly, making later intervention ineffective.

4. Regulatory focus on risk based controls

AUSTRAC expects institutions to demonstrate how risk assessments influence controls. A generic onboarding score that does not meaningfully affect monitoring strategies is unlikely to withstand scrutiny.

The Hidden Cost of Poor AML Onboarding Decisions

Weak onboarding decisions rarely fail loudly. Instead, they create slow, compounding damage across the AML lifecycle.

Inflated false positives

When onboarding risk is poorly calibrated, monitoring systems must compensate with broader rules. This leads to unnecessary alerts on low risk customers.

Operational fatigue

Analysts spend time investigating customers who never posed meaningful risk. Over time, this reduces focus and increases burnout.

Inconsistent investigations

Without a strong risk baseline, investigators lack context. Similar cases are treated differently, weakening defensibility.

Delayed detection of true risk

High risk behaviour may not stand out if the baseline itself is inaccurate.

Regulatory exposure

In remediation reviews, regulators often trace failures back to weak customer risk assessment frameworks.

AML onboarding software directly influences all of these outcomes.

What Effective AML Onboarding Software Evaluates

Modern AML onboarding software goes beyond checklists. It builds a structured understanding of risk using multiple dimensions.

Customer profile risk

  • Individual versus corporate structures
  • Ownership complexity
  • Control arrangements
  • Business activity where relevant

Geographic exposure

  • Jurisdictions of residence or operation
  • Cross border exposure
  • Known high risk corridors

Product and channel risk

  • Intended payment types
  • Expected transaction velocity
  • Exposure to real time rails
  • Use of correspondent relationships

Early behavioural signals

  • Interaction patterns during onboarding
  • Data consistency
  • Risk indicators associated with known typologies

Typology alignment

  • Known mule recruitment patterns
  • Scam related onboarding characteristics
  • Early exposure to layering or pass through risks

The goal is not to block customers unnecessarily. It is to establish a realistic and defensible risk baseline.

ChatGPT Image Dec 14, 2025, 09_28_50 PM

How AML Onboarding Shapes Everything That Comes After

Strong AML onboarding software does not operate in isolation. It feeds intelligence into the entire AML lifecycle.

Transaction monitoring

Risk scores determine which scenarios apply, how sensitive thresholds are, and how alerts are prioritised.

Ongoing due diligence

Higher risk customers receive more frequent review, while low risk customers move with less friction.

Case management

Investigators start each case with context. They understand why a customer was classified as high or medium risk.

Suspicious matter reporting

Clear risk rationales support stronger, more consistent SMRs.

Operational efficiency

Better segmentation reduces unnecessary alerts and improves resource allocation.

AUSTRAC Expectations Around AML Onboarding

AUSTRAC does not prescribe specific tools, but its guidance consistently reinforces key principles.

Institutions are expected to:

  • Apply risk based onboarding controls
  • Document how customer risk is assessed
  • Demonstrate how onboarding risk influences monitoring
  • Review and update risk frameworks regularly
  • Align onboarding decisions with evolving typologies

AML onboarding software provides the structure and traceability required to meet these expectations.

What Modern AML Onboarding Software Looks Like in Practice

The strongest platforms share several characteristics.

Clear separation from KYC

Identity is assumed verified elsewhere. AML onboarding focuses on risk logic, not document checks.

Explainable scoring

Risk classifications are transparent. Analysts and auditors can see how scores were derived.

Dynamic risk logic

Onboarding frameworks evolve as typologies change, without full system overhauls.

Integration with monitoring

Risk scores directly influence transaction monitoring behaviour.

Audit ready design

Every onboarding decision is traceable, reviewable, and defensible.

Common Mistakes Institutions Make

Despite growing awareness, several mistakes remain common.

Treating onboarding as a compliance formality

This results in generic scoring that adds little value.

Over relying on static rules

Criminal behaviour evolves faster than static frameworks.

Disconnecting onboarding from monitoring

When onboarding risk does not affect downstream controls, it becomes meaningless.

Failing to revisit onboarding frameworks

Risk logic must evolve alongside emerging scams and mule typologies.

How Tookitaki Approaches AML Onboarding

Tookitaki approaches AML onboarding as the starting point of intelligent risk management, not a standalone compliance step.

Within the FinCense platform, onboarding risk assessment:

  • Focuses on AML risk classification, not identity verification
  • Establishes behaviour aware risk baselines
  • Aligns customer risk with transaction monitoring strategies
  • Incorporates typology driven intelligence
  • Provides explainable scoring suitable for regulatory review

This approach supports Australian institutions, including community owned banks such as Regional Australia Bank, in reducing false positives, improving investigation quality, and strengthening overall AML effectiveness.

The Future of AML Onboarding in Australia

AML onboarding is moving in three clear directions.

1. From static to adaptive risk frameworks

Risk models will evolve continuously as new typologies emerge.

2. From isolated checks to lifecycle intelligence

Onboarding will become the foundation for continuous AML monitoring, not a one time gate.

3. From manual justification to assisted decisioning

AI driven support will help compliance teams explain and refine onboarding decisions.

Conclusion

AML onboarding software is not about stopping customers at the door. It is about making the right first risk decision.

In Australia’s fast moving financial environment, where scams, mule networks, and real time payments intersect, the quality of onboarding risk assessment determines everything that follows. Poor decisions create noise, inefficiency, and regulatory exposure. Strong decisions create clarity, focus, and resilience.

Institutions that treat AML onboarding as a strategic control rather than an administrative step are better equipped to detect real risk, protect customers, and meet regulatory expectations.

Because in AML, the most important decision is often the first one.

AML Onboarding Software: Why the First Risk Decision Matters More Than You Think
Blogs
15 Dec 2025
6 min
read

Why Real Time Transaction Monitoring is Now a Must-Have for Financial Institutions

When fraud moves in milliseconds, detection must move faster.

Real time transaction monitoring has shifted from a “nice to have” to a “non-negotiable” for banks and fintechs navigating today’s high-speed financial environment. As criminals exploit digital rails and consumers demand instant payments, financial institutions must upgrade their surveillance systems to catch suspicious activity the moment it happens.

Talk to an Expert

What is Real Time Transaction Monitoring?

Real time transaction monitoring is the process of analysing financial transactions as they happen to detect potentially fraudulent or suspicious activity. Instead of scanning data in batches or after the fact, these systems monitor each transaction in the moment — before it's fully executed or settled.

It empowers financial institutions to:

  • Flag high-risk transactions instantly
  • Halt or hold suspicious transfers in-flight
  • Prevent losses before they occur
  • Comply with tightening regulatory expectations

Why Real Time Monitoring Matters More Than Ever

The global payment landscape has transformed. In markets like Singapore, where PayNow and FAST are the norm, the speed of money has increased — and so has the risk.

Here’s why real time monitoring is critical:

1. Instant Payments, Instant Threats

With digital transfers happening in seconds, fraudsters exploit the lag between detection and action. Delayed monitoring means criminals can cash out before anyone notices.

2. Regulatory Pressure

Authorities like the Monetary Authority of Singapore (MAS) expect real time vigilance, especially with rising cases of mule accounts and cross-border scams.

3. Consumer Expectations

Customers expect seamless yet secure digital experiences. Real time monitoring helps strike this balance by allowing friction only where needed.

Key Components of a Real Time Monitoring System

A high-functioning real time monitoring platform combines multiple components:

1. Transaction Monitoring Engine

  • Scans data streams in milliseconds
  • Applies risk rules, scenarios, and models
  • Flags anomalies for intervention

2. Risk Scoring Module

  • Assigns risk scores to each transaction dynamically
  • Takes into account sender/receiver profiles, frequency, amount, geography, and more

3. Alert Management System

  • Routes alerts to analysts in real time
  • Enables case creation and review
  • Facilitates in-line or post-event decisioning

4. Integration Layer

  • Hooks into core banking, payment gateways, and customer systems
  • Ensures monitoring doesn’t disrupt processing

5. Analytics Dashboard

  • Offers real time visibility into flagged transactions
  • Allows compliance teams to monitor performance, tune thresholds, and audit responses

Real World Applications: Common Scenarios Caught by Real Time Monitoring

Real time systems help detect several typologies, such as:

  • Account Takeover (ATO): Sudden login from a new device followed by high-value transfers
  • Mule Account Activity: Multiple incoming credits followed by quick outward transfers
  • Social Engineering Scams: High-risk transaction patterns in elderly or first-time users
  • Cross-Border Fraud: Rapid layering of funds via wallets, crypto, or overseas transfers
  • Corporate Payment Fraud: Unusual fund movement outside normal payroll or vendor cycles

Real Time vs. Batch Monitoring: What’s the Difference?

Real time transaction monitoring and batch monitoring serve different purposes in financial crime prevention.

Real time monitoring enables banks and fintechs to analyse transactions within milliseconds, allowing immediate action to stop suspicious transfers before they are completed. It is especially suitable for high-risk, high-speed payment environments.

Batch monitoring, on the other hand, processes transactions in groups over hours or days, which limits its effectiveness in preventing fraud as the detection happens after the event. While real time monitoring allows seamless customer experience with instant decisioning, batch monitoring may be better suited for retrospective analysis or low-risk transaction patterns. As digital payments accelerate, the limitations of batch monitoring become more evident, making real time capabilities essential for modern financial institutions.

While batch monitoring still plays a role in retrospective analysis, real time systems are essential for high-risk, high-speed payment channels.

ChatGPT Image Dec 14, 2025, 09_03_50 PM

Challenges in Implementing Real Time Monitoring

Despite its value, many institutions face hurdles in deployment:

1. Infrastructure Constraints

Real time systems require high-performance computing, cloud-native design, and streaming data capabilities.

2. Alert Fatigue

Without well-tuned thresholds and intelligent prioritisation, teams can drown in alerts.

3. Regulatory Calibration

Striking the right balance between proactive monitoring and regulatory defensibility is key.

4. Fraudster Adaptability

Criminals constantly evolve. Static rules quickly become obsolete, so systems must learn and adapt.

Tookitaki’s FinCense: Real Time Monitoring with Intelligence

Tookitaki’s compliance platform, FinCense, is designed to handle real time transaction risks with precision and scale. It offers:

  • Streaming-first architecture for real time ingestion and decisioning
  • AI-powered scenario engine to detect new and evolving typologies
  • Auto-narration and AI investigation copilot to speed up case reviews
  • Federated learning from a global AML/Fraud community
  • Graph analytics to uncover hidden networks of mules, scammers, or shell firms

Deployed across major banks and fintechs in Singapore and the region, FinCense is redefining what real time compliance means.

Singapore’s Real Time Risk Landscape: Local Insights

1. Rise in Social Engineering and ATO Scams

MAS has issued multiple alerts this year highlighting the rise in impersonation and wallet-draining scams. Real time risk signals such as sudden logins or high-value transfers are critical indicators.

2. Real Time Cross-Border Transactions

Fintech players facilitating remittances must monitor intra-second fund movements across geographies. Real time sanction checks and typology simulation are essential.

3. Scam Interception Strategies

Local banks are deploying real time risk-based prompts — e.g., asking for re-confirmation or delaying high-risk transactions for manual review.

Best Practices for Effective Real Time Monitoring

Here’s how institutions can maximise their real time monitoring impact:

  • Invest in modular platforms that support both AML and fraud use cases
  • Use dynamic thresholds tuned by AI and behavioural analysis
  • Integrate external intelligence — blacklists, scam reports, network data
  • Avoid over-engineering. Start with high-risk channels (e.g., instant payments)
  • Ensure full audit trails and explainability for regulatory reviews

The Future of Real Time Compliance

Real time monitoring is evolving from a “risk control” tool into a strategic capability. The future points to:

  • Predictive monitoring that detects intent before a transaction
  • AI agents that recommend instant decisions with explainability
  • Network-level monitoring across banking consortia
  • Community-shared scenarios that help detect emerging scams faster

With criminals moving faster and regulators getting stricter, the institutions that invest in real time transaction monitoring today will be the ones most resilient tomorrow.

Why Real Time Transaction Monitoring is Now a Must-Have for Financial Institutions
Blogs
12 Dec 2025
6 min
read

How AML Software is Evolving: Smarter, Faster, Stronger Compliance

In today’s financial world, the rules of the game have changed — and so must the tools we use to play it.

As criminals become more sophisticated, regulatory pressures intensify, and digital finance explodes, banks and fintechs in Singapore are upgrading their anti-money laundering (AML) tech stacks. At the heart of this transformation is AML software: smarter, faster, and more integrated than ever before.

Talk to an Expert

What is AML Software?

AML software is a suite of technology solutions designed to help financial institutions detect, investigate, and report suspicious activities linked to money laundering, terrorism financing, and other financial crimes.

A typical AML software system includes:

  • Transaction Monitoring
  • Name Screening (Sanctions, PEPs, Adverse Media)
  • Case Management
  • Customer Risk Scoring
  • Regulatory Reporting (STR/SAR filing)

Modern AML platforms go even further, offering AI-powered features, real-time analytics, and community-driven intelligence to stay ahead of criminals.

Why AML Software Matters in Singapore

Singapore is a global finance hub — but that makes it a prime target for illicit activity.

With the Monetary Authority of Singapore (MAS) raising expectations, banks and digital payment providers face increasing pressure to:

  • Detect new fraud and laundering patterns
  • Reduce false positives
  • File timely Suspicious Transaction Reports (STRs)
  • Demonstrate effectiveness of controls

In this context, AML software is no longer a back-office utility. It’s a frontline defence mechanism.

Key Features of Next-Gen AML Software

Let’s explore what separates industry-leading AML software:

1. AI-Powered Detection

Legacy rule-based systems struggle to detect evolving threats. The best AML software today combines rules with AI and machine learning to:

  • Identify complex typologies
  • Spot previously unseen patterns
  • Continuously improve based on feedback

2. Scenario-Based Monitoring

Rather than flagging single rules, scenario-based systems simulate real-world laundering behaviour — such as layering via wallets or round-tripping via shell firms.

This reduces alert fatigue and increases true positive rates.

3. Federated Learning

Privacy is a key challenge in AML. Federated learning models allow multiple institutions to share intelligence without exposing data. Tookitaki’s FinCense platform, for example, uses federated AI to learn from over 1,200 community-contributed typologies.

4. GenAI for Investigations

Modern platforms come equipped with AI copilots that assist analysts by:

  • Narrating alerts in natural language
  • Summarising key case data
  • Suggesting investigation paths

This cuts investigation time and boosts consistency.

5. Modular and Scalable Design

Top AML software platforms are API-first and cloud-native, allowing financial institutions to:

  • Integrate seamlessly with existing systems
  • Scale as business grows
  • Tailor features to compliance needs

6. Smart Disposition and Automation

Another game-changing innovation is the use of smart disposition tools that automatically close low-risk alerts while flagging high-risk cases for review. This not only reduces manual workload but also ensures investigators focus on what truly matters.

7. Risk-Based Customer Segmentation

Risk isn’t one-size-fits-all. Better AML software supports adaptive customer risk models, enabling banks to assign varying levels of monitoring and documentation based on actual behaviour, not just profiles.

ChatGPT Image Dec 11, 2025, 04_11_11 PM

The Tookitaki Difference

Tookitaki’s AML software — FinCense — is designed for Asia’s fast-evolving financial crime landscape. It offers:

  • End-to-end AML coverage: Screening, Monitoring, Risk Scoring, and Reporting
  • Scenario-based typology library built by the AFC Ecosystem
  • Auto-Narration and Alert Clustering features for faster reviews
  • Real-time insights through graph-based risk visualisation
  • Compliance-ready reports for MAS and other regulators

It’s no surprise that leading banks and fintechs across Singapore trust Tookitaki as their AML technology partner.

Benefits of Implementing the Right AML Software

The right software delivers value across the board:

  • Efficiency: Faster investigations, fewer false positives
  • Effectiveness: Better risk detection and STR quality
  • Auditability: Full traceability and audit logs
  • Regulatory Alignment: Easier compliance with MAS TRM and AML guidelines
  • Future-Readiness: Rapid response to emerging crime trends

Beyond the basics, AML software today also plays a strategic role. By enabling early detection of syndicated frauds and emerging typologies, it gives financial institutions a first-mover advantage in safeguarding assets and reputation.

Local Trends to Watch

1. Real-Time Payment Risks

As Singapore expands FAST and PayNow, AML software must handle real-time transaction flows. Features like instant alerting and risk scoring are crucial.

2. Cross-Border Mule Networks

Organised crime groups are using Singapore as a pass-through hub. AML platforms must detect smurfing, layering, and proxy-controlled accounts across borders.

3. Digital Payment Platforms

With the rise of e-wallets, BNPL apps, and alternative lenders, AML software needs to adapt to newer transaction types and user behaviours.

4. Crypto and DeFi Threats

Even as regulations for digital assets evolve, AML tools must evolve faster — especially to monitor wallets, mixers, and anonymised chains. Platforms with crypto intelligence capabilities are emerging as essential components of a future-proof AML stack.

Common Challenges in Choosing AML Software

Even with a growing vendor landscape, not all AML software is created equal. Watch out for:

  • Poor integration support
  • Lack of local compliance features (e.g., MAS STR formats)
  • Over-reliance on manual rule tuning
  • No support for typology simulation

Some institutions also face challenges with legacy tech debt or internal resistance to automation. That’s why vendor support, training, and ongoing upgrades are just as critical as features.

How to Evaluate AML Software Providers

When assessing an AML solution, ask these questions:

  • Can the platform simulate real-life financial crime scenarios?
  • Does it offer intelligence beyond just transaction data?
  • How accurate and explainable are its AI models?
  • Is it MAS-compliant and audit-ready?
  • Does it reduce false positives while boosting true positives?

The best platforms will demonstrate value in both detection capabilities and operational impact.

Conclusion: Don’t Just Comply — Compete

AML compliance is no longer just about ticking boxes. With regulators watching, criminals evolving, and reputational risks soaring — smart AML software is a competitive advantage.

Banks and fintechs that invest in intelligent, adaptable platforms will not only stay safe, but also move faster, serve better, and scale stronger.

Tookitaki’s FinCense platform is helping make that future a reality — through AI, collaboration, and real-world detection.

How AML Software is Evolving: Smarter, Faster, Stronger Compliance