Compliance Hub

Understanding PEPs: Definition, Types & Risk Levels According to FATF

Site Logo
Tookitaki
12 Oct 2021
7 min
read

The term "Politically Exposed Person" or PEP often comes up in conversations around anti-money laundering and combating the financing of terrorism (AML/CFT). But what exactly does it mean, and why should you care? When it comes to understanding what is a pep, it is essential to comprehend that these individuals possess great power, influence, and consequently, a higher propensity to engage in illicit activities such as bribery or money laundering

In this comprehensive guide, we'll explore the intricate world of PEPs, as outlined by the Financial Action Task Force (FATF), the global money laundering and terrorist financing watchdog, and shed light on the significance of PEP screening in financial institutions.

What is a PEP and PEP according to FATF

A Politically Exposed Person (PEP) is an individual who has been entrusted with a prominent public function, either domestically or internationally. Due to their position and influence, PEPs are at a higher risk of being involved in bribery, corruption, or money laundering. The Financial Action Task Force (FATF) provides a detailed framework to understand the definition and types of PEPs, which serves as a global standard for nations and organizations alike.

Examples of PEP

PEPs are not just confined to politicians. They can also include senior government officials, judicial authorities, military officers, and even high-ranking members of state-owned enterprises. For instance, a mayor of a large city, a general in the army, or a CEO of a government-owned oil company could all be considered PEPs.

{{cta-first}}

PEPs, as per the FATF classification, embody individuals who currently serve or previously held a significant public function in a country. The high-risk nature of these roles is often associated with an enhanced likelihood of their involvement in financial crimes. This susceptibility stems from their ability to influence decisions and control resources, which can potentially be exploited for personal gains. The following categories encapsulate the diverse roles that a PEP may hold:

  • Government Roles: High-ranking officials in either the legislative, executive, or judiciary branches of government. This can range from members of parliament and supreme court judges to ambassadors and diplomats.
  • Organizational Roles: Individuals holding prominent positions in governmental commercial enterprises or political parties. This could include board members of a central bank, party leaders, or high-ranking military officials.
  • Associations: Close associates, either through social or professional connections, to a PEP. This could encompass family members, close relatives, or individuals holding beneficial ownership of a legal entity in which the government is a stakeholder.

Types of PEP Defined by FATF

Bearing in mind the broad scope of what is a PEP, the FATF has further divided PEPs into three primary categories, namely Foreign, Domestic, and International Organization PEPs.

  • Foreign PEPs: These are individuals who hold or have held prominent public positions in a foreign country. The risk associated with foreign PEPs is generally higher due to the challenges in obtaining accurate and timely data about these individuals.
  • Domestic PEPs: These refer to individuals who hold or have held significant public functions within their home country. While they also pose a risk, it is generally lower than that of their foreign counterparts due to better access to information.
  • International Organization PEPs: These are individuals who hold or have held a high-ranking position in an international organization. The risk associated with these PEPs can vary depending on factors such as the organization's transparency, the individual's role, and the level of oversight exercised.
HOW FATF CLASSIFIES PEPs

PEP Risk Levels

Understanding the PEP definition is only the first step in managing financial crime risks. The subsequent step involves a detailed risk assessment, which is crucial for regulated corporations dealing with PEPs. 

Risk associated with PEPs is generally assessed on multiple factors including the corruption level of the country they originate from, the nature of their role, and their access to significant financial resources. It's a tiered approach, ranging from low to high risk, and the scrutiny applied varies accordingly. The FATF outlines four levels of risk for PEPs:

  • Low-level risk: This encompasses supranational or international business officials and senior functionaries, as well as members of local, state, district, and urban assemblies.
  • Medium/low-level risk: This category includes top officials of government boards and state-owned enterprises such as heads of judiciaries, banks, military, law enforcement, and high-ranked civil servants in state agencies and religious organizations.
  • Medium/high-level risk: This segment includes individuals who are members of the government, parliament, judiciary, banks, law enforcement, military, and prominent political parties.
  • High-level risk: This is the highest risk category and includes heads of state or government, senior politicians, judicial or military officials, senior executives of state-owned corporations, and important party officials.

Red Flags to Watch Out for PEPs by FATF

Recognizing the potential risks associated with PEPs, the FATF has highlighted several red flags that can indicate suspicious activity. These indicators act as warning signals for possible financial abuse and can help corporations detect and control potential illegal activities involving PEPs. Here are some key red flags outlined by the FATF:

  • Unusual Wealth: A drastic and unexplained increase in a PEP's wealth can be a significant red flag.
  • Offshore Accounts: Frequent use of offshore accounts without a logical or apparent reason.
  • Shell Companies: Involvement in operations through shell companies that lack transparency.
  • Identity Concealment: PEPs might attempt to hide their identities to evade scrutiny. This could involve assigning legal ownership to another individual, frequently interacting with intermediaries, or using corporate structures to obscure ownership.
  • Suspicious Behavior: This could include secrecy about the source of funds, providing false or insufficient information, eagerness to justify business dealings, denial of an entry visa, or frequent movement of funds across countries.
  • Company Position: The PEP's position within the company could also raise concerns. This could include having control over the company's funds, operations, policies, or anti-money laundering/terrorist financing mechanisms.
  • Industry: Certain industries are considered high-risk due to their nature and the potential for exploitation. This could include banking and finance, military and defense, businesses dealing with government agencies, construction, mining and extraction, and public goods provision.

Changes in PEP Status: An Evolving Landscape

The PEP landscape has witnessed several changes over the years, primarily in the definition and monitoring of PEPs. The term PEP was initially used to describe senior government officials and their immediate family members only. However, the definition has since been expanded to include individuals who hold prominent positions in international organizations, as well as their close associates. This change reflects the evolving nature of the global economy, where non-governmental organizations and international institutions wield significant power and influence.

The monitoring of PEPs has also evolved. Previously, self-disclosure was the primary method to identify a PEP, which was often ineffective, as some PEPs chose to hide their status or failed to disclose it accurately. Today, governments and financial institutions have access to sophisticated databases and screening tools, thanks to advanced AML compliance software, enhancing the ability to detect potential money laundering and corruption risks associated with PEPs.

Why PEP Screening is Important

Financial crimes pose a significant global concern, and organizations are obligated to comply with anti-money laundering regulations to combat such crimes. As part of this compliance, institutions must identify customers who may have a higher risk of being involved in financial crimes. PEP screening is a crucial process during account opening that helps identify high-risk customers and prevent financial crimes. Failure to adhere to these screening procedures can result in penalties from AML regulators for non-compliant organizations.

PEP screening is crucial because these individuals are at a higher risk of involvement in bribery, corruption, and money laundering due to their position and influence. Failure to conduct proper screening can result in heavy fines for the institution and reputational damage. More importantly, it can facilitate financial crimes that have societal impacts.

How Tookitaki Can Help

As an award-winning regulatory technology (RegTech) company, we are revolutionising financial crime detection and prevention for banks and fintechs with our cutting-edge solutions. We provide an end-to-end, AI-powered AML compliance platform, named the Anti-Money Laundering Suite (AMLS), with modular solutions that help financial institutions deal with the ever-changing financial crime landscape.

Our Smart Screening solution provides accurate screening of names and transactions across many languages and a continuous monitoring framework for comprehensive risk management. Our powerful name-matching engine screens and prioritises all name search hits, helping to achieve 80% precision and 90% recall levels in screening programmes of financial institutions.

The features of our Smart Screening solution include:

  • Advanced machine learning engine that powers  50+ name-matching techniques
  • Comprehensive matching enabled by the use of multiple attributes i.e; name, address, gender, date of birth, incorporation and more
  • Individual language models to improve accuracy across 18+ languages and 10 different scripts
  • Built-in transliteration engine for effective cross-lingual matching
  • Scalable to support massive watchlist data

{{cta-ebook}}

Final Thoughts

In order to mitigate the risks associated with PEPs, it is imperative for financial institutions to implement robust PEP screening processes within their compliance framework. By doing so, they not only shield themselves from potential involvement in illicit activities but also safeguard their reputation and actively contribute to the global fight against financial crime.

Tookitaki's innovative Smart Screening solution offers precise screening of customers and transactions against sanctions, PEPs, Adverse Media, and various watchlists in real-time across over 22 languages. With an impressive 90% accuracy rate, this cutting-edge technology utilizes 12 advanced name-matching techniques on 7 customer attributes, incorporating a multi-stage matching mechanism and cross-lingual matching capabilities. To explore more about the capabilities of Tookitaki's screening solution, schedule a consultation session by clicking the link below.

Frequently Asked Questions (FAQs)

What is a PEP according to FATF?

A PEP, according to FATF, is an individual who is or has been entrusted with a prominent public function, making them a higher risk for involvement in bribery and corruption.

What are some examples of PEPs?

Examples include politicians, high-ranking military officials, and senior executives in state-owned corporations.

Why is PEP screening important?

PEP screening is crucial for mitigating the risk of financial crimes like money laundering and corruption, which could result in severe penalties and reputational damage for the financial institution involved.

What are the types of PEPs defined by FATF?

FATF defines several types of PEPs including domestic, foreign, and those in international organisations.

What are some red flags to watch for in PEPs?

Red flags include sudden wealth accumulation, frequent use of offshore accounts, and involvement with shell companies.

By submitting the form, you agree that your personal data will be processed to provide the requested content (and for the purposes you agreed to above) in accordance with the Privacy Notice

success icon

We’ve received your details and our team will be in touch shortly.

In the meantime, explore how Tookitaki is transforming financial crime prevention.
Learn More About Us
Oops! Something went wrong while submitting the form.

Ready to Streamline Your Anti-Financial Crime Compliance?

Our Thought Leadership Guides

Blogs
24 Nov 2025
6 min
read

Singapore’s Secret Weapon Against Dirty Money? Smarter AML Investigation Tools

In the fight against financial crime, investigation tools can make or break your compliance operations.

With Singapore facing growing threats from money mule syndicates, trade-based laundering, and cyber-enabled fraud, the need for precise and efficient anti-money laundering (AML) investigations has never been more urgent. In this blog, we explore how AML investigation tools are evolving to help compliance teams in Singapore accelerate detection, reduce false positives, and stay audit-ready.

Talk to an Expert

What Are AML Investigation Tools?

AML investigation tools are technology solutions that assist compliance teams in detecting, analysing, documenting, and reporting suspicious financial activity. These tools bridge the gap between alert generation and action — providing context, workflow, and intelligence to identify real risk from noise.

These tools can be:

  • Standalone modules within AML software
  • Integrated into broader case management systems
  • Powered by AI, machine learning, or rules-based engines

Why They Matter in the Singapore Context

Singapore’s financial services sector faces increasing pressure from regulators, counterparties, and the public to uphold world-class compliance standards. Investigation tools help institutions:

  • Quickly triage and resolve alerts from transaction monitoring or screening systems
  • Understand customer behaviour and transactional context
  • Collaborate across teams for efficient case resolution
  • Document decisions in a regulator-ready audit trail

Key Capabilities of Modern AML Investigation Tools

1. Alert Contextualisation

Investigators need context around each alert:

  • Who is the customer?
  • What’s their risk rating?
  • Has this activity occurred before?
  • What other products do they use?

Good tools aggregate this data into a single view to save time and prevent errors.

2. Visualisation of Transaction Patterns

Network graphs and timelines show links between accounts, beneficiaries, and geographies. These help spot circular payments, layering, or collusion.

3. Narrative Generation

AI-generated case narratives can summarise key findings and explain the decision to escalate or dismiss an alert. This saves time and ensures consistency in reporting.

4. Investigator Workflow

Assign tasks, track time-to-resolution, and route high-risk alerts to senior reviewers — all within the system.

5. Integration with STR Filing

Once an alert is confirmed as suspicious, the system should auto-fill suspicious transaction report (STR) templates for MAS submission.

Common Challenges Without Proper Tools

Many institutions still struggle with manual or legacy investigation processes:

  • Copy-pasting between systems and spreadsheets
  • Investigating the same customer multiple times due to siloed alerts
  • Missing deadlines for STR filing
  • Poor audit trails, leading to compliance risk

In high-volume environments like Singapore’s fintech hubs or retail banks, these inefficiencies create operational drag.

Real-World Example: Account Takeover Fraud via Fintech Wallets

An e-wallet provider in Singapore noticed a spike in high-value foreign exchange transactions.

Upon investigation, the team found:

  • Victim accounts were accessed via compromised emails
  • Wallet balances were converted into EUR/GBP instantly
  • Funds were moved to mule accounts and out to crypto exchanges

Using an investigation tool with network mapping and device fingerprinting, the compliance team:

  • Identified shared mule accounts across multiple victims
  • Escalated the case to the regulator within 24 hours
  • Blocked future similar transactions using rule updates
ChatGPT Image Nov 24, 2025, 10_00_56 AM

Tookitaki’s FinCense: Investigation Reinvented

Tookitaki’s FinCense platform provides end-to-end investigation capabilities designed for Singapore’s regulatory and operational needs.

Features That Matter:

  • FinMate: An AI copilot that analyses alerts, recommends actions, and drafts case narratives
  • Smart Disposition: Automatically generates case summaries and flags key findings
  • Unified Case Management: Investigators work from a single dashboard that integrates monitoring, screening, and risk scoring
  • MAS-Ready Reporting: Customisable templates for local regulatory formats
  • Federated Intelligence: Access 1,200+ community-driven typologies from the AFC Ecosystem to cross-check against ongoing cases

Results From Tookitaki Clients:

  • 72% fewer false positives
  • 3.5× faster resolution times
  • STR submission cycles shortened by 60%

Regulatory Expectations from MAS

Under MAS guidelines, financial institutions must:

  • Have effective alert management processes
  • Ensure timely investigation and STR submission
  • Maintain records of all investigations and decisions
  • Demonstrate scenario tuning and effectiveness reviews

A modern AML investigation tool supports all these requirements, reducing operational and audit burden.

AML Investigation and Emerging Threats

1. Deepfake-Fuelled Impersonation

Tools must validate biometric data and voiceprints to flag synthetic identities.

2. Crypto Layering

Graph-based tracing of wallet addresses is increasingly vital as laundering moves to decentralised finance.

3. Mule Account Clusters

AI-based clustering tools can identify unusual movement patterns across otherwise low-risk individuals.

4. Instant Payments Risk

Real-time investigation support is needed for PayNow, FAST, and other instant channels.

How to Evaluate a Vendor

Ask these questions:

  • Can your tool integrate with our current transaction monitoring system?
  • How do you handle false positive reduction?
  • Do you support scenario simulation and tuning?
  • Is your audit trail MAS-compliant?
  • Can we import scenarios from other institutions (e.g. AFC Ecosystem)?

Looking Ahead: The Future of AML Investigations

AML investigations are evolving from reactive tasks to intelligence-led workflows. Tools are getting:

  • Agentic AI: Copilots like FinMate suggest next steps, reducing guesswork
  • Community-Driven: Knowledge sharing through federated systems boosts preparedness
  • More Visual: Risk maps, entity graphs, and timelines help understand complex flows
  • Smarter Thresholds: ML-driven dynamic thresholds reduce alert fatigue

Conclusion: Investigation is Your Last Line of Defence

In an age of instant payments, cross-border fraud, and synthetic identities, the role of AML investigation tools is mission-critical. Compliance officers in Singapore must be equipped with solutions that go beyond flagging transactions — they must help resolve them fast and accurately.

Tookitaki’s FinCense, with its AI-first approach and regulatory alignment, is redefining how Singaporean institutions approach AML investigations. It’s not just about staying compliant. It’s about staying smart, swift, and one step ahead of financial crime.

Singapore’s Secret Weapon Against Dirty Money? Smarter AML Investigation Tools
Blogs
24 Nov 2025
6 min
read

Fraud Detection Software for Banks: Inside the Digital War Room

Every day in Australia, fraud teams fight a silent battle. This is the story of how they do it, and the software helping them win.

Prologue: The Alert That Shouldn’t Have Happened

It is 2:14 pm on a quiet Wednesday in Sydney.
A fraud investigator at a mid-sized Australian bank receives an alert:
Attempted transfer: 19,800 AUD — flagged as “possible mule routing”.

The transaction looks ordinary.
Local IP.
Registered device.
Customer active for years.

Nothing about it screams fraud.

But the software sees something the human eye cannot:
a subtle deviation in typing cadence, geolocation drift over the past month, and a behavioural mismatch in weekday spending patterns.

This is not the customer.
This is someone pretending to be them.

The transfer is blocked.
The account is frozen.
A customer is protected from losing their savings.

This is the new frontline of fraud detection in Australian banking.
A place where milliseconds matter.
Where algorithms, analysts, and behavioural intelligence work together in near real time.

And behind it all sits one critical layer: fraud detection software built for the world we live in now, not the world we used to live in.

Talk to an Expert

Chapter 1: Why Fraud Detection Has Become a War Room Operation

Fraud has always existed, but digital banking has changed its scale, speed, and sophistication.
Australian banks are facing:

  • Real-time scams through NPP
  • Deepfake-assisted social engineering
  • Mule networks recruiting on TikTok
  • Synthetic IDs built from fragments of real citizens
  • Remote access scams controlling customer devices
  • Cross-border laundering through fintech rails
  • Account takeover via phishing and malware

Fraud today is not one person trying their luck.
It is supply-chain crime.

And the only way banks can fight it is by transforming fraud detection into a dynamic, intelligence-led discipline supported by software that thinks, learns, adapts, and collaborates.

Chapter 2: What Modern Fraud Detection Software Really Does

Forget the outdated idea that fraud detection is simply about rules.

Modern software must:

  • Learn behaviour
  • Spot anomalies
  • Detect device manipulation
  • Understand transaction velocity
  • Identify network relationships
  • Analyse biometrics
  • Flag mule-like patterns
  • Predict risk, not just react to it

The best systems behave like digital detectives.

They observe.
They learn.
They connect dots humans cannot connect in real time.

Chapter 3: The Six Capabilities That Define Best-in-Class Fraud Detection Software

1. Behavioural Biometrics

Typing speed.
Mouse movement.
Pressure on mobile screens.
Session navigation patterns.

These signals reveal whether the person behind the device is the real customer or an impostor.

2. Device Intelligence

Device fingerprinting, jailbreak checks, emulator detection, and remote-access-trojan indicators now play a key role in catching account takeover attempts.

3. Network Link Analysis

Modern fraud does not occur in isolation.
Software must map:

  • Shared devices
  • Shared addresses
  • Linked mule accounts
  • Common beneficiaries
  • Suspicious payment clusters

This is how syndicates are caught.

4. Real-Time Risk Scoring

Fraud cannot wait for batch jobs.
Software must analyse patterns as they happen and block or challenge the transaction instantly.

5. Cross-Channel Visibility

Fraud moves across onboarding, transfers, cards, wallets, and payments.
Detection must be omnichannel, not siloed.

6. Analyst Assistance

The best software does not overwhelm investigators.
It assists them by:

  • Summarising evidence
  • Highlighting anomalies
  • Suggesting next steps
  • Reducing noise

Fraud teams fight harder when the software fights with them.

ChatGPT Image Nov 23, 2025, 07_23_27 PM

Chapter 4: Inside an Australian Bank’s Digital Fraud Team

Picture this scene.

A fraud operations centre in Melbourne.
Multiple screens.
Live dashboards.
Analysts monitoring spikes in activity.

Suddenly, the software detects something:
A cluster of small transfers moving rapidly into multiple new accounts.
Amounts just below reporting thresholds.
Accounts opened within the last three weeks.
Behaviour consistent with mule recruitment.

This is not random.
This is an organised ring.

The fraud team begins tracing the pattern using network graphs visualised by the software.
Connections emerge.
A clear structure forms.
Multiple accounts tied to the same device.
Shared IP addresses across suburbs.

Within minutes, the team has identified a mule network operating across three states.

They block the accounts.
Freeze the funds.
Notify the authorities.
Prevent a chain of victims.

This is fraud detection software at its best:
Augmenting human instinct with machine intelligence.

Chapter 5: The Weaknesses of Old Fraud Detection Systems

Some Australian banks still rely on systems that:

  • Use rigid rules
  • Miss behavioural patterns
  • Cannot detect deepfakes
  • Struggle with NPP velocity
  • Generate high false positives
  • Cannot identify linked accounts
  • Have no real-time capabilities
  • Lack explainability for AUSTRAC or internal audit

These systems were designed for a slower era, when payments were not instantaneous and criminals did not use automation.

Old systems do not fail because they are old.
They fail because the world has changed.

Chapter 6: What Australian Banks Should Look For in Fraud Detection Software (A Modern Checklist)

1. Real-Time Analysis for NPP

Detection must be instant.

2. Behavioural Intelligence

Software should learn how customers normally behave and identify anomalies.

3. Mule Detection Algorithms

Australia is experiencing a surge in mule recruitment.
This is now essential.

4. Explainability

Banks must be able to justify fraud decisions to regulators and customers.

5. Cross-Channel Intelligence

Transfers, cards, NPP, mobile apps, and online banking must speak to each other.

6. Noise Reduction

Software must reduce false positives, not amplify them.

7. Analyst Enablement

Investigators should receive context, not clutter.

8. Scalability for Peak Fraud Events

Fraud often surges during crises, holidays, and scams going viral.

9. Localisation

Australian fraud patterns differ from other regions.

10. Resilience

APRA CPS 230 demands operational continuity and strong third-party governance.

Fraud software is now part of a bank’s resilience framework, not just its compliance toolkit.

Chapter 7: How Tookitaki Approaches Fraud Detection

Tookitaki’s approach to fraud detection is built around one core idea:
fraudsters behave like networks, not individuals.

FinCense analyses risk across relationships, devices, behaviours, and transactions to detect patterns traditional systems miss.

What makes it different:

1. A Behaviour-First Model

Instead of relying on static rules, the system understands customer behaviour over time.
This helps identify anomalies that signal account takeover or mule activity.

2. Investigation Intelligence

Tookitaki supports analysts with enriched context, visual evidence, and prioritised risks, reducing decision fatigue.

3. Multi-Channel Detection

Fraud does not stay in one place, and neither does the software.
It connects signals across payments, wallets, online banking, and transfers.

4. Designed for Both Large and Community Banks

Institutions such as Regional Australia Bank benefit from accurate detection without operational complexity.

5. Built for Real-Time Environments

FinCense supports high-velocity payments, enabling institutions to detect risk at NPP speed.

Tookitaki is not designed to overwhelm banks with rules.
It is designed to give them a clear picture of risk in a world where fraud changes daily.

Chapter 8: The Future of Fraud Detection in Australian Banking

1. Deepfake-Resistant Identity Verification

Banks will need technology that can detect video, voice, and biometric spoofing.

2. Agentic AI Assistants for Investigators

Fraud teams will have copilots that surface insights, summarise cases, and provide investigative recommendations.

3. Network-Wide Intelligence Sharing

Banks will fight fraud together, not alone, through federated learning and shared typology networks.

4. Real-Time Customer Protection

Banks will block suspicious payments before they leave the customer’s account.

5. Predictive Fraud Prevention

Systems will identify potential mule behaviour before the account becomes active.

Fraud detection will become proactive, not reactive.

Conclusion

Fraud detection software is no longer a technical add-on.
It is the digital armour protecting customers, banks, and the integrity of the financial system.

The frontline has shifted.
Criminals operate as organised networks, use automation, manipulate devices, and exploit real-time payments.
Banks need software built for this reality, not yesterday’s.

The right fraud detection solution gives banks something they cannot afford to lose:
time, clarity, and confidence.

Because in today’s Australian financial landscape, fraud moves fast.
Your software must move faster.

Fraud Detection Software for Banks: Inside the Digital War Room
Blogs
21 Nov 2025
6 min
read

AML Software in Australia: The 7 Big Questions Every Bank Should Be Asking in 2025

Choosing AML software used to be a technical decision. In 2025, it has become one of the most strategic choices a bank can make.

Introduction

Australia’s financial sector is entering a defining moment. Instant payments, cross-border digital crime, APRA’s tightening expectations, AUSTRAC’s data scrutiny, and the rise of AI are forcing banks to rethink their entire compliance tech stack.

At the centre of this shift sits one critical question: what should AML software actually do in 2025?

This blog does not give you a shopping list or a vendor comparison.
Instead, it explores the seven big questions every Australian bank, neobank, and community-owned institution should be asking when evaluating AML software. These are the questions that uncover risk, expose limitations, and reveal whether a solution is built for the next decade, not the last.

Let’s get into them.

Talk to an Expert

Question 1: Does the AML Software Understand Risk the Way Australia Defines It?

Most AML systems were designed with global rule sets that do not map neatly to Australian realities.

Australia has:

  • Distinct PEP classifications
  • Localised money mule typologies
  • Syndicated fraud patterns unique to the region
  • NPP-driven velocity in payment behaviour
  • AUSTRAC expectations around ongoing due diligence
  • APRA’s new focus on operational resilience

AML software must be calibrated to Australian behaviours, not anchored to American or European assumptions.

What to look for

  • Localised risk models trained on Australian financial behaviour
  • Models that recognise local account structures and payment patterns
  • Typologies relevant to the region
  • Adaptability to NPP and emerging scams affecting Australians
  • Configurable rule logic for Australia’s regulatory environment

If software treats all markets the same, its risk understanding will always be one step behind Australian criminals.

Question 2: Can the Software Move at the Speed of NPP?

The New Payments Platform changed everything.
What used to be processed in hours is now settled in seconds.

This means:

  • Risk scoring must be real time
  • Monitoring must be continuous
  • Alerts must be triggered instantly
  • Investigators need immediate context, not post-fact analysis

Legacy systems built for batch processing simply cannot keep up with the velocity or volatility of NPP transactions.

What to look for

  • True real-time screening and monitoring
  • Sub-second scoring
  • Architecture built for high-volume environments
  • Scalability without performance drops
  • Real-time alert triaging

If AML software cannot respond before a payment settles, it is already too late.

Question 3: Does the Software Reduce False Positives in a Meaningful Way?

Every vendor claims they reduce false positives.
The real question is how and by how much.

In Australia, many banks spend up to 80 percent of their AML effort investigating low-value alerts. This creates fatigue, delays, and inconsistent decisions.

Modern AML software must:

  • Prioritise alerts based on true behavioural risk
  • Provide contextual information alongside flags
  • Reduce noise without reducing sensitivity
  • Identify relationships, patterns, and anomalies that rules alone miss

What to look for

  • Documented false positive reduction numbers
  • Behavioural analytics that distinguish typical from atypical activity
  • Human-in-the-loop learning
  • Explainable scoring logic
  • Tiered risk categorisation

False positives drain resources.
Reducing them responsibly is a competitive advantage.

Question 4: How Does the Software Support Investigator Decision-Making?

Analysts are the heart of AML operations.
Software should not just alert them. It should empower them.

The most advanced AML platforms are moving toward investigator-centric design, helping analysts work faster, more consistently, and with greater clarity.

What to look for

  • Clear narratives attached to alerts
  • Visual network link analysis
  • Relationship mapping
  • Easy access to KYC, transaction history, and behaviour insights
  • Tools that surface relevant context without manual digging

If AML software only generates alerts but does not explain them, it is not modern software. It is a data dump.

ChatGPT Image Nov 20, 2025, 01_58_14 PM

Question 5: Is the AML Software Explainable Enough for AUSTRAC?

AUSTRAC’s reviews increasingly require banks to justify their risk models and demonstrate why a decision was made.

AML software must show:

  • Why an alert was generated
  • What data was used
  • What behavioural markers contributed
  • How the system ranked or prioritised risk
  • How changes over time affected decision logic

Explainability is now a regulatory requirement, not a bonus feature.

What to look for

  • Decision logs
  • Visual explanations
  • Feature attribution for risk scoring
  • Scenario narratives
  • Governance dashboards

Opaque systems that cannot justify their reasoning leave institutions vulnerable during audits.

Question 6: How Well Does the AML Software Align With APRA’s CPS 230 Expectations?

Operational resilience is now a board-level mandate.
AML software sits inside the cluster of critical systems APRA expects institutions to govern closely.

This includes:

  • Third-party risk oversight
  • Business continuity
  • Incident management
  • Data quality controls
  • Outsourcing governance

AML software is no longer evaluated only by compliance teams.
It must satisfy risk, technology, audit, and resilience requirements too.

What to look for

  • Strong uptime track record
  • Clear incident response procedures
  • Transparent service level reporting
  • Secure and compliant hosting
  • Tested business continuity measures
  • Clear vendor accountability and control frameworks

If AML software cannot meet CPS 230 expectations, it cannot meet modern banking expectations.

Question 7: Will the Software Still Be Relevant Five Years From Now?

This is the question few institutions ask, but the one that matters most.
AML software is not a one-year decision. It is a multi-year partnership.

To future-proof compliance, banks must look beyond features and evaluate adaptability.

What to look for

  • A roadmap that includes new crime types
  • AI models that learn responsibly
  • Agentic support tools that help investigators
  • Continuous updates without major uplift projects
  • Collaborative intelligence capabilities
  • Strong alignment with emerging AML trends in Australia

This is where vendors differentiate themselves.
Some provide tools.
A few provide evolution.

A Fresh Look at Tookitaki

Tookitaki has emerged as a preferred AML technology partner among several banks across Asia-Pacific, including institutions in Australia, because it focuses less on building features and more on building confidence.

Confidence that alerts are meaningful.
Confidence that the system is explainable.
Confidence that operations remain stable.
Confidence that investigators have support.
Confidence that intelligence keeps evolving.

Rather than positioning AML as a fixed set of rules, Tookitaki approaches it as a learning discipline.

Its platform, FinCense, helps Australian institutions strengthen:

  • Real time monitoring capability
  • Consistency in analyst decisions
  • Model transparency for AUSTRAC
  • Operational resilience for APRA expectations
  • Adaptability to emerging typologies
  • Scalability for both large and community institutions like Regional Australia Bank

This is AML software designed not only to detect crime, but to grow with the institution.

Conclusion

AML software in Australia is at a crossroads.
The era of legacy rules, static scenarios, and batch processing is ending.
Banks now face a new set of expectations driven by speed, transparency, resilience, and intelligence.

The seven questions in this guide cut through the noise. They help institutions evaluate AML software not as a product, but as a long-term strategic partner for risk management.

Australia’s financial sector is changing quickly.
The right AML software will help banks move confidently into that future.
The wrong one will hold them back.

Pro tip: The strongest AML systems are not just built on good software. They are built on systems that understand the world they operate in, and evolve alongside it.

AML Software in Australia: The 7 Big Questions Every Bank Should Be Asking in 2025