Compliance Hub

The Ultimate Guide to Payment Screening in AML Compliance

Site Logo
Tookitaki
6 min
read

Payment screening is a crucial process in the world of finance and banking, aimed at ensuring compliance with anti-money laundering (AML) regulations and detecting potential fraudulent transactions. By analyzing incoming and outgoing payments, payment screening enables financial institutions to verify the legitimacy of payment information and credentials, as well as identify and escalate any suspicious activities for further investigation.

What is Payment Screening?

Let's start by making it simple. Imagine you're at a concert entrance, and there are security folks checking everyone's bags and tickets. Well, payment screening is sort of like that but for money moving around in the digital world. It's a check to make sure that the payment you're making or receiving isn't sketchy or breaking any rules. So, for businesses and especially financial institutions, it's a must-have to ensure they're not accidentally helping out with illegal activities like money laundering.

{{cta-first}}

How Does the Payment Screening Process Work?

Remember the security check example? In the world of finance, this screening isn't done by people but by super-smart computer programs. When a payment is about to be made, the software springs into action. It checks the names, the amount, the place it's coming from, and where it's going. If something looks fishy, it sets off an alarm, and human beings take over to examine it more closely.

The Payment Screening Process

The payment screening process involves several steps to effectively verify payment information and detect any potential risks or violations of regulatory standards. Let's explore each step in detail:

Step 1: Data Collection and Validation

The first step in the payment screening process is to collect and validate the necessary data from both incoming and outgoing transactions. This includes gathering information such as transaction amounts, sender and receiver details, geographic locations, and any additional relevant data points. It is essential to ensure the accuracy and completeness of the collected data to enable effective screening and analysis.

Step 2: Customer Authentication and Verification

Once the data is collected and validated, the next step is customer authentication and verification. This involves confirming the identity of the individuals involved in the transaction and verifying their credentials. Financial institutions often employ various techniques and technologies, such as Know Your Customer (KYC) procedures and identity verification tools, to ensure the legitimacy of the parties involved.

Step 3: Risk Assessment

After customer authentication and verification, the payment screening process moves on to risk assessment. This step involves evaluating the potential risks associated with the transaction, including the likelihood of fraud or money laundering. Risk assessment may consider factors such as transaction patterns, historical data, geographic locations, and any red flags identified during the authentication process.

Step 4: Name Screening Against Sanctions Lists

A critical aspect of payment screening is name screeningagainst sanctions lists. Financial institutions are required to cross-reference the names of individuals or entities involved in the transaction with various sanctions lists. These lists typically include individuals, organizations, or countries associated with illegal activities or deemed high-risk by regulatory authorities. By conducting name screening, financial institutions can ensure compliance with regulatory standards and avoid facilitating transactions involving sanctioned entities.

Step 5: Escalation and Investigation

If any suspicious activities or potential violations are identified during the payment screening process, the next step is escalation and further investigation. Financial institutions have dedicated teams and processes in place to review and analyze flagged transactions in more detail. This may involve gathering additional information, conducting enhanced due diligence, and collaborating with law enforcement or regulatory agencies if necessary.

Step 6: Reporting and Compliance

Lastly, the payment screening process includes reporting and compliance. Financial institutions must maintain proper documentation of their screening activities and any actions taken in response to identified risks or violations. This information is crucial for audits, regulatory compliance, and demonstrating a commitment to AML and fraud prevention.

{{cta-ebook}}

Importance and Benefits of Payment Screening in AML

Why all this fuss? Well, it's the law! Anti-Money Laundering (AML) rules require this type of screening to stop bad guys from moving around money they shouldn't have. But it's not just about being law-abiding. Payment screening helps in identifying risks early on. For example, if a payment is coming from a place known for illegal activities, it's better to know that before the money hits your account, right?

Benefits of Payment Screening

Implementing an effective payment screening process offers several benefits for financial institutions:

AML Compliance

Payment screening plays a vital role in ensuring AML compliance. By verifying customer identities, conducting risk assessments, and screening against sanctions lists, financial institutions can prevent money laundering and comply with regulatory standards. Failure to comply with AML regulations can result in hefty fines and reputational damage for institutions.

Fraud Detection and Prevention

Effective payment screening helps financial institutions detect and prevent fraudulent activities. By analyzing transaction patterns, conducting risk assessments, and cross-referencing names against sanctions lists, suspicious transactions can be identified and escalated for further investigation. Prompt detection of fraud can mitigate financial losses and protect both the institution and its customers.

Enhanced Security

Payment screening enhances the overall security of financial transactions. By authenticating customers, verifying their credentials, and analyzing transaction data, institutions can ensure that only legitimate transactions are processed. This helps protect customers' funds and sensitive information, reducing the risk of unauthorized access or fraudulent activities.

Reputation Management

Maintaining a strong reputation is very important for financial institutions. Implementing robust payment screening processes demonstrates a commitment to compliance, security, and fraud prevention. This builds trust among customers, regulators, and other stakeholders, contributing to a positive reputation in the industry.

Difference Between Payment Screening and Transaction Monitoring

You may think that payment screening is the same as transaction monitoring, but they are like cousins, not twins. Payment screening is the bouncer at the door, checking everyone coming in. Transaction monitoring, on the other hand, is like a security camera inside the venue, observing what's happening during the event. Payment screening stops the suspicious activity before it happens, while transaction monitoring keeps an eye on the money once it's already in the system.

Understanding Payment Screening Vs Transaction Monitoring

While payment screening and transaction monitoring share the common goal of analyzing transactions, they serve different purposes in the financial industry. Transaction monitoring primarily focuses on real-time or retroactive analysis to detect and prevent fraud and money laundering. On the other hand, payment screening is more closely associated with AML compliance and customer authentication and verification.

As real-time payment services gain popularity, the need for both real-time monitoring and screening becomes increasingly important. While transaction monitoring analyzes customer transaction patterns to identify anomalies that may indicate suspicious activity, payment screening focuses on verifying customer identities. It takes into account factors such as geographic location and the devices used by the sender and receiver. Additionally, payment screening involves name screening against sanctions lists to ensure compliance with regulatory standards.

Payment screening is typically conducted at specific moments in a customer's lifecycle, such as during the onboarding process or after updating identification documentation. In contrast, transaction monitoring is an ongoing process that continuously analyzes transactions for potential risks.

Final Words

Just like you wouldn't let just anyone into your house, financial companies shouldn't let just any payment through their systems. Payment screening acts like that diligent security guard, making sure that only the good stuff gets through and that you stay on the right side of the law.

Payment screening is a critical process that financial institutions must undertake to ensure AML compliance, detect and prevent fraud, and enhance transaction security. By implementing effective payment screening processes, institutions can verify payment information, authenticate customers, assess risks, and identify suspicious transactions. 

{{cta('827dede2-4566-4bf7-a73a-e939b4337e6d','justifycenter')}}

This not only helps institutions comply with regulatory standards but also protects their reputation and the interests of their customers. As the financial landscape evolves, payment screening remains a vital component of a comprehensive AML and fraud prevention strategy.

Frequently Asked Questions (FAQs)

What is the difference between name screening and payment screening?

Name screening is like checking the guest list at a party, focusing mainly on the names involved in a transaction. Payment screening is more thorough; it's like checking not only the guest list but also their bags and their car's trunk!

What type of screening is conducted on payments?

Payment screening involves multiple checks like verifying names, scrutinizing the amount, and assessing the risk level based on where the payment is coming from and going to.

How often is payment screening done?

Payment screening is conducted in real-time or batch mode, depending on the institution's setup, every time a payment is initiated or processed.

Is payment screening mandatory for all businesses?

While payment screening is not legally mandatory for all businesses, it is highly recommended for financial institutions and firms that handle large or international transactions to comply with AML laws.

Can payment screening detect fraud?

Yes, payment screening can identify potentially fraudulent transactions by flagging irregularities, but it is just one part of a comprehensive fraud prevention strategy.

By submitting the form, you agree that your personal data will be processed to provide the requested content (and for the purposes you agreed to above) in accordance with the Privacy Notice

success icon

We’ve received your details and our team will be in touch shortly.

In the meantime, explore how Tookitaki is transforming financial crime prevention.
Learn More About Us
Oops! Something went wrong while submitting the form.

Ready to Streamline Your Anti-Financial Crime Compliance?

Our Thought Leadership Guides

Blogs
14 Aug 2025
5 min
read

Smarter Investigations: The Rise of AML Investigation Tools in Australia

In the battle against financial crime, the right AML investigation tools turn data overload into actionable intelligence.

Australian compliance teams face a constant challenge — growing transaction volumes, increasingly sophisticated money laundering techniques, and tighter AUSTRAC scrutiny. In this environment, AML investigation tools aren’t just nice-to-have — they’re essential for turning endless alerts into fast, confident decisions.

Talk to an Expert

Why AML Investigations Are Getting Harder in Australia

1. Explosion of Transaction Data

With the New Payments Platform (NPP) and cross-border corridors, institutions must monitor millions of transactions daily.

2. More Complex Typologies

From mule networks to shell companies, layering techniques are harder to detect with static rules alone.

3. Regulatory Expectations

AUSTRAC demands timely and accurate Suspicious Matter Reports (SMRs). Delays or incomplete investigations can lead to penalties and reputational damage.

4. Resource Constraints

Skilled AML investigators are in short supply. Teams must do more with fewer people — making efficiency critical.

What Are AML Investigation Tools?

AML investigation tools are specialised software platforms that help compliance teams analyse suspicious activity, prioritise cases, and document findings for regulators.

They typically include features such as:

  • Alert triage and prioritisation
  • Transaction visualisation
  • Entity and relationship mapping
  • Case management workflows
  • Automated reporting capabilities

Key Features of Effective AML Investigation Tools

1. Integrated Case Management

Centralise all alerts, documents, and investigator notes in one platform.

2. Entity Resolution & Network Analysis

Link accounts, devices, and counterparties to uncover hidden connections in laundering networks.

3. Transaction Visualisation

Graph-based displays make it easier to trace fund flows and identify suspicious patterns.

4. AI-Powered Insights

Machine learning models suggest likely outcomes, surface overlooked anomalies, and flag high-risk entities faster.

5. Workflow Automation

Automate repetitive steps like KYC refresh requests, sanctions re-checks, and document retrieval.

6. Regulator-Ready Reporting

Generate Suspicious Matter Reports (SMRs) and audit logs that meet AUSTRAC’s requirements.

ChatGPT Image Aug 13, 2025, 12_27_28 PM

Why These Tools Matter in Australia’s Compliance Landscape

  • Speed: Fraud and laundering through NPP happen in seconds — investigations need to move just as fast.
  • Accuracy: AI-driven tools reduce false positives, ensuring analysts focus on real threats.
  • Compliance Assurance: Detailed audit trails prove that due diligence was carried out thoroughly.

Use Cases in Australia

Case 1: Cross-Border Layering Detection

An Australian bank flagged multiple small transfers to different ASEAN countries. The AML investigation tool mapped the network, revealing links to a known mule syndicate.

Case 2: Crypto Exchange Investigations

AML tools traced a high-value Bitcoin-to-fiat conversion back to an account flagged in a sanctions database, enabling rapid SMR submission.

Advanced Capabilities to Look For

Federated Intelligence

Access anonymised typologies and red flags from a network of institutions to spot emerging threats faster.

Embedded AI Copilot

Assist investigators in summarising cases, recommending next steps, and even drafting SMRs.

Scenario Simulation

Test detection scenarios against historical data before deploying them live.

Spotlight: Tookitaki’s FinCense and FinMate

FinCense integrates investigation workflows directly into its AML platform, while FinMate, Tookitaki’s AI investigation copilot, supercharges analyst productivity.

  • Automated Summaries: Generates natural language case narratives for internal and regulatory reporting.
  • Risk Prioritisation: Highlights the highest-risk cases first.
  • Real-Time Intelligence: Pulls in global typology updates from the AFC Ecosystem.
  • Full Transparency: Glass-box AI explains every decision, satisfying AUSTRAC’s audit requirements.

With FinCense and FinMate, Australian institutions can cut investigation times by up to 50% — without compromising quality.

Conclusion: From Data to Decisions — Faster

The volume and complexity of alerts in modern AML programmes make manual investigation unsustainable. The right AML investigation tools transform scattered data into actionable insights, helping compliance teams stay ahead of both criminals and regulators.

Pro tip: Choose tools that not only investigate faster, but also learn from every case — making your compliance programme smarter over time.

Smarter Investigations: The Rise of AML Investigation Tools in Australia
Blogs
13 Aug 2025
5 min
read

Smarter Defences: How Machine Learning is Transforming Fraud Detection in Philippine Banking

Fraud in banking has never been faster, smarter, or more relentless — and neither have the defences.

In the Philippines, the rapid rise of digital banking, mobile wallets, and instant payments has created unprecedented opportunities for growth — and for fraudsters. From account takeovers to synthetic identity scams, financial institutions are under constant attack. Traditional rule-based detection systems, while useful, are no longer enough. Enter machine learning (ML) — the technology redefining fraud detection by spotting suspicious activity in real time and adapting to new threats before they cause damage.

Talk to an Expert

The Growing Fraud Threat in Philippine Banking

Digital banking adoption in the Philippines has surged in recent years, driven by initiatives like the BSP’s Digital Payments Transformation Roadmap and the expansion of fintech services. While these advancements boost financial inclusion, they also open the door to fraud.

According to the Bankers Association of the Philippines, reported cyber fraud incidents have increased steadily, with phishing, account takeover (ATO), and card-not-present (CNP) fraud among the top threats.

Key trends include:

  • Instant payment exploitation: Fraudsters leveraging PESONet and InstaPay for rapid fund transfers.
  • Social engineering scams: Convincing victims to disclose personal and banking details.
  • Cross-border fraud networks: Syndicates funnelling illicit funds via multiple jurisdictions.

In this environment, speed, accuracy, and adaptability are critical — qualities where ML excels.

Why Traditional Fraud Detection Falls Short

Rule-based fraud detection systems rely on predefined scenarios (e.g., flagging transactions over a certain threshold or unusual logins from different IP addresses). While they can catch known patterns, they struggle with:

  • Evolving tactics: Fraudsters quickly adapt once they know the rules.
  • False positives: Too many alerts waste investigator time and frustrate customers.
  • Lack of contextual awareness: Rules can’t account for the nuances of customer behaviour.

This is where machine learning transforms the game.

How Machine Learning Enhances Fraud Detection

1. Pattern Recognition Beyond Human Limits

ML models can process millions of transactions in real time, identifying subtle anomalies in behaviour — such as unusual transaction timing, frequency, or geolocation.

2. Continuous Learning

Unlike static rules, ML systems learn from new data. When fraudsters switch tactics, the model adapts, ensuring defences stay ahead.

3. Reduced False Positives

ML distinguishes between legitimate unusual behaviour and true fraud, cutting down on unnecessary alerts. This not only saves resources but improves customer trust.

4. Predictive Capability

Advanced algorithms can predict the likelihood of a transaction being fraudulent based on historical and behavioural data, enabling proactive intervention.

ChatGPT Image Aug 13, 2025, 12_05_50 PM

Key Machine Learning Techniques in Banking Fraud Detection

Supervised Learning

Models are trained using labelled datasets — past transactions marked as “fraud” or “legitimate.” Over time, they learn the characteristics of fraudulent activity.

Unsupervised Learning

Used when there’s no labelled data, these models detect outliers and anomalies without prior examples, ideal for spotting new fraud types.

Reinforcement Learning

The system learns by trial and error, optimising decision-making as it receives feedback from past outcomes.

Natural Language Processing (NLP)

NLP analyses unstructured data such as emails, chat messages, or KYC documents to detect potential fraud triggers.

Real-World Fraud Scenarios in the Philippines Where ML Makes a Difference

  1. Account Takeover (ATO) Fraud – ML flags login attempts from unusual devices or geolocations while analysing subtle session behaviour patterns.
  2. Loan Application Fraud – Models detect inconsistencies in credit applications, cross-referencing applicant data with external sources.
  3. Payment Mule Detection – Identifying suspicious fund flows in real time, such as rapid inbound and outbound transactions in newly opened accounts.
  4. Phishing-Driven Transfers – Correlating unusual fund movement with compromised accounts reported across multiple banks.

Challenges in Implementing ML for Fraud Detection in the Philippines

  • Data Quality and Availability – ML models need vast amounts of clean, structured data. Gaps or inaccuracies can reduce effectiveness.
  • Regulatory Compliance – BSP regulations require explainability in AI models; “black box” ML can be problematic without interpretability tools.
  • Talent Gap – Limited availability of data science and ML experts in the local market.
  • Integration with Legacy Systems – Many Philippine banks still run on legacy infrastructure, complicating ML deployment.

Best Practices for Deploying ML-Based Fraud Detection

1. Start with a Hybrid Approach

Combine rule-based and ML models initially to ensure smooth transition and maintain compliance.

2. Ensure Explainability

Use explainable AI (XAI) frameworks so investigators and regulators understand why a transaction was flagged.

3. Leverage Federated Learning

Share intelligence across institutions without exposing raw data, enhancing detection of cross-bank fraud schemes.

4. Regular Model Retraining

Update models with the latest fraud patterns to stay ahead of evolving threats.

5. Engage Compliance Early

Work closely with risk and compliance teams to align ML use with BSP guidelines.

The Tookitaki Advantage: The Trust Layer to Fight Financial Crime

Tookitaki’s FinCense platform is built to help Philippine banks combat fraud and money laundering with Agentic AI — an advanced, explainable AI framework aligned with global and local regulations.

Key benefits for fraud detection in banking:

  • Real-time risk scoring on every transaction.
  • Federated intelligence from the AFC Ecosystem to detect emerging fraud typologies seen across the region.
  • Lower false positives through adaptive models trained on both local and global data.
  • Explainable decision-making that meets BSP requirements for transparency.

By combining advanced ML techniques with collaborative intelligence, FinCense gives banks in the Philippines the tools they need to protect customers, meet compliance standards, and reduce operational costs.

Conclusion: Staying Ahead of the Curve

Fraudsters in the Philippines are becoming more sophisticated, faster, and harder to trace. Relying on static, rules-only systems is no longer an option. Machine learning empowers banks to detect fraud in real time, reduce false positives, and adapt to ever-changing threats — all while maintaining compliance.

For institutions aiming to build trust in a rapidly digitising market, the path forward is clear: invest in ML-powered fraud detection now, and make it a core pillar of your risk management strategy.

Smarter Defences: How Machine Learning is Transforming Fraud Detection in Philippine Banking
Blogs
13 Aug 2025
5 min
read

Stopping Fraud in Its Tracks: The Future of Transaction Fraud Detection in Singapore

Fraud doesn’t knock—it slips through unnoticed until it’s too late.

As digital payments accelerate across Singapore, financial institutions face a mounting challenge: detecting fraudulent transactions in real time, without slowing down legitimate users. From phishing scams and mule accounts to synthetic identities and account takeovers, transaction fraud has become smarter, faster, and harder to catch.

This blog explores how transaction fraud detection is evolving in Singapore, the gaps still present in legacy systems, and how AI-driven tools are helping financial institutions fight back.

Talk to an Expert

Why Transaction Fraud Detection Is Critical in Singapore

Singapore’s position as a fintech hub comes with exposure to increasingly sophisticated fraud schemes. According to the Singapore Police Force, scam-related crimes in 2024 accounted for over 70% of all crimes reported, with transaction fraud and unauthorised transfers making up a large portion of the losses.

The government’s drive for real-time payments — from PayNow to FAST — adds pressure on banks and fintechs to detect fraud instantly, without delaying genuine transactions.

Missed fraud isn’t just a financial risk — it erodes trust. And in Singapore’s tightly regulated environment, trust is everything.

Types of Transaction Fraud Facing Financial Institutions

Understanding the tactics fraudsters use is the first step toward stopping them. In Singapore, common forms of transaction fraud include:

1. Account Takeover (ATO)

Fraudsters use stolen credentials to gain control over an account and initiate transfers, bill payments, or cash withdrawals — often within minutes.

2. Social Engineering Scams

Victims are tricked into authorising payments themselves under false pretences — for example, investment scams, job scams, or fake relationships.

3. Money Muling

Fraudsters use mule accounts — often belonging to unsuspecting individuals — to route stolen or laundered funds through multiple hops.

4. Real-Time Payment Exploits

With instant transfer systems, once funds are sent, they’re often impossible to recover. Fraudsters exploit this urgency and invisibility.

5. Business Email Compromise (BEC)

Corporate payments are manipulated through phishing or spoofing attacks, redirecting funds to illicit accounts under false vendor names.

ChatGPT Image Aug 13, 2025, 11_14_07 AM

Challenges in Transaction Fraud Detection

Despite investment in fraud controls, many Singaporean financial institutions still face persistent roadblocks:

1. High False Positives

Basic rules-based systems raise alerts for normal user behaviour, overwhelming fraud teams and increasing friction for genuine customers.

2. Lack of Real-Time Detection

Many systems rely on batch processing or delayed scoring, leaving gaps for fraudsters to exploit instant payment rails.

3. Inability to Detect Novel Patterns

Fraudsters constantly change tactics. Systems that only recognise known fraud signatures are easily bypassed.

4. Poor Cross-Border Visibility

Singapore is deeply integrated into global financial flows. A lack of insight into transaction trails beyond borders makes it harder to detect layered laundering and syndicated fraud.

What Effective Transaction Fraud Detection Looks Like Today

Modern fraud detection is about being predictive, not just reactive. Here's what best-in-class solutions offer:

AI + Machine Learning

Rather than using only static rules, intelligent systems learn from historical patterns, adapt to new behaviours, and improve accuracy over time.

Behavioural Profiling

These systems build user profiles based on login patterns, spending habits, device data, and more — flagging anything outside the norm in real time.

Network Analysis

Sophisticated fraud often involves mule networks or linked entities. Graph analysis helps identify suspicious linkages between accounts.

Federated Intelligence Sharing

Platforms like Tookitaki’s AFC Ecosystem allow institutions to benefit from typologies and red flags contributed by others — without sharing sensitive data.

Explainable AI

Regulators require transparency. Solutions must explain why a transaction was flagged, not just that it was.

How Tookitaki Is Powering Smarter Fraud Detection

Tookitaki’s FinCense platform is purpose-built to detect transaction fraud in real time. Here’s how it helps Singapore-based institutions stay ahead:

  • Agentic AI Framework: Modular AI agents continuously scan transactions, user behaviour, and risk context to identify fraud patterns — even emerging ones.
  • Scenario-Based Detection: Leverages real-world fraud scenarios from the AFC Ecosystem, including scams unique to Southeast Asia like fake job recruitment and QR-enabled mule layering.
  • Real-Time Simulation & Threshold Optimisation: Before deploying rules, institutions can simulate detection impact to reduce false positives.
  • Smart Disposition Engine: AI-generated summaries assist investigators by surfacing key risk insights for flagged transactions.
  • Federated Learning: Combines privacy-preserving AI with community-sourced intelligence for faster, more adaptive detection.

Whether you’re a digital bank, a payment gateway, or a traditional financial institution, FinCense provides the flexibility, speed, and accuracy needed for the Singaporean fraud landscape.

Key Strategies for Singaporean Firms to Strengthen Fraud Defences

1. Upgrade From Rule-Based to Hybrid Systems

A combination of dynamic rules and machine learning provides greater precision and adaptability.

2. Focus on Early Detection

Identify mule accounts, layered transfers, and behaviour anomalies before the fraud is completed.

3. Enable Seamless Analyst Workflows

Reduce alert fatigue with AI-driven prioritisation and investigation summaries.

4. Join Intelligence-Sharing Networks

Collaborate with platforms like the AFC Ecosystem to keep up with evolving fraud typologies.

5. Design for Real-Time Action

Ensure that fraud decisions can be made in milliseconds — and tie detection systems directly to block/hold actions.

Conclusion: Fraudsters Are Getting Smarter. Are You?

In Singapore’s fast-moving financial ecosystem, transaction fraud detection is no longer just a compliance function — it’s a competitive advantage.

Banks and fintechs that invest in modern, intelligent fraud prevention are not only protecting their bottom line — they’re protecting their brand and customer relationships.

📌 The future of fraud detection is proactive, predictive, and powered by community-led intelligence. Don’t just keep up — get ahead.

Stopping Fraud in Its Tracks: The Future of Transaction Fraud Detection in Singapore