Compliance Hub

The Best Anti Money Laundering Solutions for Smarter, Scalable Compliance

Site Logo
Tookitaki
8 min
read

Anti-money laundering solutions are evolving fast—helping financial institutions detect risk earlier and respond with greater precision.

With financial crime becoming more complex and regulatory pressure intensifying, traditional tools are struggling to keep pace. Banks and fintechs are increasingly turning to next-generation AML technologies that combine AI, behavioural analytics, and real-time intelligence to transform compliance operations.

In this article, we explore the top anti-money laundering solutions on the market in 2025 and what makes them stand out in an increasingly high-stakes landscape.

AML solutions

Understanding the Importance of AML Solutions in Today's Financial Landscape

AML solutions play a pivotal role in maintaining the integrity of the global financial system. They help in identifying and blocking illegal financial activities.

Effective AML solutions act as the first line of defence against money laundering and terrorist financing. They protect the credibility and stability of financial markets.

Non-compliance with AML regulations can have severe consequences. Businesses may face substantial fines, damaging their financial standing and brand reputation.

Apart from financial penalties, there are additional risks. Non-compliance can lead to legal challenges, operational disruptions, and loss of customer trust.

Consider the following impacts of non-compliance:

  • Loss of business licenses
  • Lowered investor confidence
  • Increased scrutiny from regulatory bodies

Moreover, the ripple effects of non-compliance can be far-reaching, impacting not just the business but its clients and partners as well. In this light, effective AML measures become indispensable for sustainable business operations.

The Role of Technology in AML Compliance

Technology significantly enhances anti-money laundering efforts, providing robust software solutions to combat financial crime. These tools have evolved, offering advanced capabilities to meet the growing complexity of money laundering schemes.

Advancements in AML software include real-time transaction monitoring, enhanced pattern recognition, and improved anomaly detection. These features enable businesses to identify suspicious activity efficiently, reducing the risk of human error.

Key technological advancements in AML include:

  • Machine learning algorithms
  • AI-driven customer risk profiling
  • Blockchain for secure tracking

Incorporating technology in compliance processes also aids in regulatory adherence. Automated systems handle vast amounts of data, ensuring consistent checks against regulatory requirements across jurisdictions.

By streamlining compliance processes, technology also reduces manual workloads for compliance teams. Automated alerts, streamlined reporting, and electronic records facilitate quicker, more accurate responses. As a result, financial institutions can maintain regulatory compliance more effectively.


{{cta-first}}

Key Components of Effective AML Strategies

Developing a robust AML strategy involves several crucial components that work in harmony to mitigate financial crime risks. Each element serves a distinct purpose but collectively ensures comprehensive protection against illicit activities.

Risk Assessment and Management

Risk assessment forms the backbone of any AML program, providing the framework for identifying and evaluating potential threats. Effective risk management involves understanding specific vulnerabilities unique to each business and adapting strategies accordingly.

Core elements of risk assessment include:

  • Identifying high-risk customers and transactions
  • Evaluating geographic and sector-specific risks
  • Regularly updating risk profiles based on new data

Due Diligence and Customer Verification

Performing thorough due diligence is essential in verifying customer identities and assessing risk levels. Know Your Customer (KYC) protocols are critical in gathering pertinent information about clients.

Key steps in due diligence encompass:

  • Collecting and verifying ID and beneficial ownership information
  • Screening against sanctions and PEP (Politically Exposed Persons) lists
  • Continuous updating of customer profiles

Ongoing Monitoring and Suspicious Activity Reporting

Consistent monitoring of transactions and account activities allows businesses to spot irregularities that may indicate illicit behaviour. This vigilance is key to effective AML practices.

Monitoring involves using advanced analytics to track transaction patterns and escalate alerts to compliance officers. Once suspicious activities are identified, they must be promptly reported to authorities, following strict protocols to ensure regulatory compliance. By integrating these elements into an AML strategy, businesses can effectively protect themselves from financial crimes while maintaining compliance with global standards.

Leveraging Machine Learning and AI in AML Detection

Machine learning and artificial intelligence are revolutionising AML detection, making it more efficient and effective. These technologies enable automated transaction monitoring, greatly reducing manual oversight and increasing the speed of detection.

Automated systems swiftly analyse vast amounts of transactional data. This capability allows for real-time detection of unusual activities that may indicate money laundering. Such rapid analysis minimises risk exposure and helps maintain regulatory compliance.

Data analytics plays a crucial role in identifying suspicious patterns within financial data. By analysing historical transactions, AI algorithms can learn typical behaviour and detect anomalies, often uncovering complex schemes that might elude traditional methods. This advanced insight empowers businesses to proactively address potential threats and refine their AML strategies over time. By integrating machine learning and AI into their AML efforts, businesses gain an enhanced capability to detect and prevent financial crime effectively.

Integrating AML Solutions with Financial Systems

Integrating AML solutions with existing financial systems poses significant challenges. Legacy systems, often siloed and outdated, complicate seamless integration. This disconnect can hinder real-time data sharing essential for effective monitoring.

To overcome these challenges, businesses may adopt intermediary software solutions that bridge old and new systems. These tools facilitate communication between disparate platforms, ensuring consistent data flow and comprehensive oversight. By modernising infrastructure, organisations can enhance their AML efforts and maintain compliance.

The shift towards cloud-based AML solutions is gaining momentum. These platforms offer scalability, cost-effectiveness, and rapid deployment, making them attractive for businesses looking to upgrade. Cloud solutions enable real-time updates and continuous compliance with evolving regulations. As they become more prevalent, firms can achieve more flexible and robust AML systems that adapt quickly to new threats and regulatory requirements, staying ahead in the fight against financial crime.

Regulatory Compliance and Global AML Standards

Navigating the maze of AML regulations requires businesses to be agile and well-informed. New regulations are frequently introduced, reflecting the ever-evolving nature of financial crimes. Businesses must adapt quickly to these changes to ensure compliance and avoid penalties.

Staying compliant demands a deep understanding of both local and international regulations. A key strategy is to establish a dedicated compliance team that focuses on monitoring regulatory updates. This team can implement necessary changes swiftly, ensuring continued adherence to relevant laws and standards.

Cross-border cooperation is vital for effective AML enforcement. Financial transactions often span multiple jurisdictions, necessitating a standardised approach. Harmonising regulations across borders helps create a unified front against money laundering. This cooperation enhances the ability of regulators and businesses to detect and curb illegal activities more effectively.

A multi-country alignment in AML standards benefits global businesses. Here are a few reasons why:

  • Increased efficiency in data sharing and analysis.
  • Simplified compliance processes for multinational corporations.
  • Enhanced ability to combat cross-border financial crimes.

Standardisation also drives innovation as businesses develop universal solutions to meet global regulatory demands. By embracing these practices, firms can better position themselves to tackle money laundering and related threats worldwide.

Here’s a rewritten section featuring the top 10 vendors of AML solutions, including Tookitaki and removing Unit21:

Top AML Software Solutions

In the ever-evolving landscape of financial compliance, businesses have access to a variety of Anti-Money Laundering (AML) software solutions. Below are ten of the leading vendors in AML technology, each offering unique tools to help organisations safeguard against financial crimes:

  1. Tookitaki: Tookitaki provides a comprehensive AI-driven AML solution that automates compliance processes and enhances the accuracy of financial crime detection and prevention. Their technology empowers organisations to stay ahead of evolving regulatory demands and financial crime threats.
  2. Trulioo: Trulioo specialises in automating Know Your Customer (KYC) and Know Your Business (KYB) processes, enabling organisations to fulfil Anti-Money Laundering (AML) and Customer Due Diligence (CDD) requirements efficiently.
  3. Lightico: Lightico facilitates compliance for banks and their customers by digitising the identification process. This streamlining of KYC compliance initiatives simplifies procedures, making adherence easier.
  4. Sanction Scanner: Sanction Scanner offers cost-effective anti-money laundering solutions suitable for businesses of all sizes. Their platform assists organisations in maintaining compliance with regulatory requirements seamlessly.
  5. DueDil: DueDil helps businesses comply with KYB regulations through an effective API that aids in onboarding new customers while ensuring ongoing regulatory compliance.
  6. PassFort: PassFort enables companies to manage risk while upholding trust and compliance standards with their user-friendly software designed for a streamlined compliance experience.
  7. Encompass: Encompass is well-regarded for its KYC automation tools, catering to major financial and professional services firms globally, thus strengthening their compliance capabilities.

Choosing the right AML software is essential for financial institutions to effectively address growing regulatory scrutiny. By understanding the features and strengths of each vendor, businesses can make informed decisions that align with their specific compliance needs.

This revised section effectively highlights the top vendors while emphasising the importance of selecting the right AML software in combating financial crimes.

A Multi-Layered Approach to AML: Beyond Software

Implementing effective AML measures goes beyond deploying advanced software solutions. It's crucial to foster a culture of compliance within the organisation. Training and education are essential components of this effort. Employees must be well-versed in the latest AML regulations and practices. Regular workshops and seminars can ensure staff stay informed and vigilant.

Internal policies and audits form the backbone of a robust AML framework. Clear guidelines should be established, outlining procedures for detecting and reporting suspicious activities. Regular audits play a critical role in identifying gaps and inefficiencies in existing AML processes. These audits can help ensure that the organisation's AML strategies remain both compliant and effective.

A combination of training, well-defined policies, and regular audits creates a comprehensive defence against money laundering. Businesses that adopt this multi-layered approach are better equipped to address the complexities of financial crime. By fostering a proactive and educated workforce, companies can more effectively combat potential threats.

{{cta-whitepaper}}

Future Trends in Anti-Money Laundering Efforts

The financial landscape is constantly evolving, bringing new challenges to AML efforts. One such challenge is the rise of cryptocurrency and blockchain technology. These technologies offer decentralised transaction methods that can potentially obscure financial trails. Therefore, understanding their impact on AML efforts is crucial. Businesses must adapt their strategies to address cryptocurrency-related risks.

Looking ahead, several trends are poised to shape the future of AML solutions. One key development is the increasing use of artificial intelligence in automated decision-making. AI has the potential to enhance the accuracy and efficiency of transaction monitoring. This could lead to fewer false positives and more effective identification of suspicious activities.

Another trend is the growing importance of global cooperation in AML regulations. As financial transactions become more cross-border, regulatory harmonisation becomes essential. International bodies may push for standardised compliance rules to simplify global financial operations. Such changes require businesses to stay agile and responsive to new requirements.

To thrive in this shifting landscape, businesses must keep an eye on emerging technologies and regulatory trends. By embracing innovation and adapting to new compliance standards, companies can strengthen their AML strategies. Staying informed and flexible will be crucial for success in the fight against evolving financial crimes.

Conclusion: Embrace the Future of Compliance with Tookitaki's FinCense AML Software

In an era where financial crimes are becoming increasingly sophisticated, staying ahead of threats is paramount. Tookitaki’s FinCense AML software offers a formidable advantage through its unique Anti-Financial Crime (AFC) Ecosystem, a community-driven digital repository of financial crime patterns. This collaborative network provides access to the latest AML and fraud typologies, ensuring your institution remains proactive against emerging threats.

FinCense empowers organisations to accurately detect risk in real-time. With advanced AI and machine learning capabilities, the software ensures precise and timely threat detection, effectively safeguarding your assets and reputation. Boasting over 90% accuracy in real-time detection and prevention of suspicious activities, FinCense allows your compliance teams to focus on what truly matters—mitigating risk and enhancing operational efficiency.

Moreover, scaling seamlessly is a hallmark of FinCense, thanks to its powerful, modern data technology stack. Organisations can deploy it rapidly across their enterprises, adjusting to changing regulatory landscapes and business needs effortlessly.

Choosing Tookitaki’s FinCense AML software not only fortifies your defence against financial crimes but also positions your organisation at the forefront of compliance technology. Embrace the future of AML solutions today and ensure your business thrives in a secure, compliant environment.

By submitting the form, you agree that your personal data will be processed to provide the requested content (and for the purposes you agreed to above) in accordance with the Privacy Notice

success icon

We’ve received your details and our team will be in touch shortly.

In the meantime, explore how Tookitaki is transforming financial crime prevention.
Learn More About Us
Oops! Something went wrong while submitting the form.

Ready to Streamline Your Anti-Financial Crime Compliance?

Our Thought Leadership Guides

Blogs
23 Dec 2025
6 min
read

Transaction Fraud Prevention Solutions: Safeguarding Malaysia’s Digital Payments Economy

As digital payments accelerate, transaction fraud prevention solutions have become the frontline defence protecting trust in Malaysia’s financial system.

Malaysia’s Transaction Boom Is Creating New Fraud Risks

Malaysia’s payments landscape has transformed at remarkable speed. Real-time transfers, DuitNow QR, e-wallets, online marketplaces, and cross-border digital commerce now power everyday transactions for consumers and businesses alike.

This growth has brought undeniable benefits. Faster payments, broader financial inclusion, and seamless digital experiences have reshaped how money moves across the country.

However, the same speed and convenience are being exploited by criminal networks. Fraud is no longer opportunistic or manual. It is organised, automated, and designed to move money before institutions can respond.

Banks and fintechs in Malaysia are now facing a surge in:

  • Account takeover driven transaction fraud
  • Scam related fund transfers
  • Mule assisted payment fraud
  • QR based fraud schemes
  • Merchant fraud and fake storefronts
  • Cross border transaction abuse
  • Rapid layering through instant payments

Transaction fraud is no longer an isolated problem. It is tightly linked to money laundering, reputational risk, and customer trust.

This is why transaction fraud prevention solutions have become mission critical for Malaysia’s financial ecosystem.

Talk to an Expert

What Are Transaction Fraud Prevention Solutions?

Transaction fraud prevention solutions are technology platforms designed to detect, prevent, and respond to fraudulent payment activity in real time.

They analyse transaction behaviour, customer profiles, device signals, and contextual data to identify suspicious activity before funds are irreversibly lost.

Modern solutions typically support:

  • Real-time transaction monitoring
  • Behavioural analysis
  • Risk scoring and decisioning
  • Fraud pattern detection
  • Blocking or challenging suspicious transactions
  • Alert investigation and resolution
  • Integration with AML and case management systems

Unlike traditional post-transaction review tools, modern transaction fraud prevention solutions operate during the transaction, not after the loss has occurred.

Their goal is prevention, not recovery.

Why Transaction Fraud Prevention Matters in Malaysia

Malaysia’s financial ecosystem presents a unique combination of opportunity and exposure.

Several factors make advanced fraud prevention essential.

1. Instant Payments Leave No Room for Delay

With DuitNow and real-time transfers, fraudulent funds can exit the system within seconds. Manual reviews or batch monitoring are no longer effective.

2. Scams Are Driving Transaction Fraud

Investment scams, impersonation scams, and social engineering attacks often rely on victims initiating legitimate looking transfers that are, in reality, fraudulent.

3. Mule Networks Enable Scale

Criminal syndicates recruit mules to move fraud proceeds through multiple accounts, making individual transactions appear low risk.

4. Cross Border Exposure Is Rising

Fraud proceeds are often routed quickly to offshore accounts, crypto platforms, or foreign payment services.

5. Regulatory Expectations Are Increasing

Bank Negara Malaysia expects institutions to demonstrate strong controls over transaction risk, real-time detection, and effective response mechanisms.

Transaction fraud prevention solutions address these risks by analysing intent, behaviour, and context at the moment of payment.

How Transaction Fraud Prevention Solutions Work

Effective fraud prevention systems operate through a multi-layered decision process.

1. Transaction Data Ingestion

Each payment is analysed as it is initiated. The system ingests transaction attributes such as amount, frequency, beneficiary details, channel, and timing.

2. Behavioural Profiling

The system compares the transaction against the customer’s historical behaviour. Deviations from normal patterns raise risk indicators.

3. Device and Channel Intelligence

Device fingerprints, IP address patterns, and channel usage provide additional context on whether a transaction is legitimate.

4. Machine Learning Detection

ML models identify anomalies such as unusual velocity, new beneficiaries, out of pattern transfers, or coordinated behaviour across accounts.

5. Risk Scoring and Decisioning

Each transaction receives a risk score. Based on this score, the system can allow, block, or challenge the transaction in real time.

6. Alert Generation and Review

High-risk transactions generate alerts for investigation. Evidence is captured automatically to support review.

7. Continuous Learning

Investigator outcomes feed back into the models, improving accuracy over time.

This real-time loop is what makes modern fraud prevention effective against fast-moving threats.

Why Legacy Fraud Controls Are No Longer Enough

Many Malaysian institutions still rely on rule-based or reactive fraud systems. These systems struggle in today’s environment.

Common shortcomings include:

  • Static rules that miss new fraud patterns
  • High false positives that frustrate customers
  • Manual intervention that slows response
  • Limited understanding of behavioural context
  • Siloed fraud and AML platforms
  • Inability to detect coordinated mule activity

Criminals adapt faster than static systems. Fraud prevention must be adaptive, intelligent, and connected.

ChatGPT Image Dec 22, 2025, 03_37_42 PM

The Role of AI in Transaction Fraud Prevention

Artificial intelligence has fundamentally changed how fraud is detected and prevented.

1. Behavioural Intelligence

AI understands what is normal for each customer and flags deviations that rules cannot capture.

2. Predictive Detection

Models identify fraud patterns early, even before a transaction looks obviously suspicious.

3. Real-Time Decisioning

AI enables instant decisions without human delay.

4. Reduced False Positives

Contextual analysis ensures that legitimate customers are not unnecessarily blocked.

5. Explainable Decisions

Modern AI systems provide clear reasons for each decision, supporting customer communication and regulatory review.

AI powered transaction fraud prevention solutions are now essential for any institution operating in real time payment environments.

Tookitaki’s FinCense: A Unified Transaction Fraud Prevention Solution for Malaysia

While many platforms treat fraud as a standalone problem, Tookitaki’s FinCense approaches transaction fraud prevention as part of a broader financial crime ecosystem.

FinCense delivers a unified solution that combines fraud prevention, AML detection, onboarding intelligence, and case management into one platform.

This holistic approach is especially powerful in Malaysia’s fast-moving payments environment.

Agentic AI for Real-Time Fraud Decisions

FinCense uses Agentic AI to support real-time fraud prevention.

The system:

  • Analyses transaction context instantly
  • Identifies coordinated behaviour across accounts
  • Generates clear explanations for risk decisions
  • Recommends actions based on learned patterns

Agentic AI ensures speed without sacrificing accuracy.

Federated Intelligence Through the AFC Ecosystem

Fraud patterns rarely remain confined to one institution or one country.

FinCense connects to the Anti-Financial Crime (AFC) Ecosystem, enabling transaction fraud prevention to benefit from regional intelligence.

Malaysian institutions gain visibility into:

  • Scam driven transaction patterns seen in neighbouring markets
  • Mule behaviour observed across ASEAN
  • Emerging QR fraud techniques
  • New transaction laundering pathways

This shared intelligence strengthens fraud defences without sharing sensitive customer data.

Explainable AI for Trust and Governance

FinCense provides transparent explanations for every fraud decision.

Investigators, compliance teams, and regulators can clearly see:

  • Which behaviours triggered a decision
  • How risk was assessed
  • Why a transaction was blocked or allowed

This transparency supports strong governance and customer communication.

Integrated Fraud and AML Protection

Transaction fraud often feeds directly into money laundering.

FinCense connects fraud events to downstream AML monitoring, enabling institutions to:

  • Detect mule assisted fraud early
  • Track fraud proceeds through transaction flows
  • Prevent laundering before it escalates

This integrated approach is critical for disrupting organised crime.

Scenario Example: Preventing a Scam Driven Transfer in Real Time

A Malaysian customer initiates a large transfer after receiving investment advice through a messaging app.

Individually, the transaction looks legitimate. The customer is authenticated and has sufficient balance.

FinCense identifies the risk in real time:

  1. Behavioural analysis flags an unusual transfer amount for the customer.
  2. The beneficiary account is new and linked to multiple recent inflows.
  3. Transaction timing matches known scam patterns from regional intelligence.
  4. Agentic AI generates a risk explanation in seconds.
  5. The transaction is blocked and escalated for review.

The customer is protected. Funds remain secure. The scam fails.

Benefits of Transaction Fraud Prevention Solutions for Malaysian Institutions

Advanced fraud prevention delivers tangible outcomes.

  • Reduced fraud losses
  • Faster response to emerging threats
  • Lower false positives
  • Improved customer experience
  • Stronger regulatory confidence
  • Better visibility into fraud networks
  • Seamless integration with AML controls

Transaction fraud prevention becomes a trust enabler rather than a friction point.

What to Look for in Transaction Fraud Prevention Solutions

When evaluating fraud prevention platforms, Malaysian institutions should prioritise:

Real-Time Capability
Decisions must happen during the transaction.

Behavioural Intelligence
Understanding customer behaviour is critical.

Explainability
Every decision should be transparent and defensible.

Integration
Fraud prevention must connect with AML and case management.

Regional Intelligence
ASEAN-specific fraud patterns must be included.

Scalability
Systems must perform under high transaction volumes.

FinCense meets all these criteria through its unified, AI-driven architecture.

The Future of Transaction Fraud Prevention in Malaysia

Transaction fraud will continue to evolve as criminals adapt to new technologies.

Future trends include:

  • Greater use of behavioural biometrics
  • Cross-institution intelligence sharing
  • Real-time scam intervention workflows
  • Stronger consumer education integration
  • Deeper convergence of fraud and AML platforms
  • Responsible AI governance frameworks

Malaysia’s strong digital adoption and regulatory focus position it well to lead in advanced fraud prevention.

Conclusion

Transaction fraud is no longer a secondary risk. It is a central threat to trust in Malaysia’s digital payments ecosystem.

Transaction fraud prevention solutions must operate in real time, understand behaviour, and integrate seamlessly with AML defences.

Tookitaki’s FinCense delivers exactly this. By combining Agentic AI, federated intelligence, explainable decisioning, and unified fraud and AML protection, FinCense empowers Malaysian institutions to stop fraud before money leaves the system.

In a world where payments move instantly, prevention must move faster.

Transaction Fraud Prevention Solutions: Safeguarding Malaysia’s Digital Payments Economy
Blogs
22 Dec 2025
6 min
read

Anti Fraud Tools: What They Actually Do Inside a Bank

Anti fraud tools are not shiny dashboards or alert engines. They are decision systems working under constant pressure, every second of every day.

Introduction

Anti fraud tools are often described as if they were shields. Buy the right technology, deploy the right rules, and fraud risk is contained. In practice, fraud prevention inside a bank looks very different.

Fraud does not arrive politely. It moves quickly, exploits customer behaviour, adapts to controls, and takes advantage of moments when systems or people hesitate. Anti fraud tools sit at the centre of this environment, making split-second decisions that affect customers, revenue, and trust.

This blog looks past vendor brochures and feature lists to examine what anti fraud tools actually do inside a bank. Not how they are marketed, but how they operate day to day, where they succeed, where they struggle, and what strong fraud capability really looks like in practice.

Talk to an Expert

Anti Fraud Tools Are Decision Engines, Not Detection Toys

At their core, anti fraud tools exist to answer one question.

Is this activity safe to allow right now?

Every fraud decision carries consequences. Block too aggressively and genuine customers are frustrated. Allow too freely and fraud losses escalate. Anti fraud tools constantly balance this tension.

Unlike many compliance controls, fraud systems often operate in real time. They must make decisions before money moves, accounts are accessed, or payments are authorised. There is no luxury of post-event investigation.

This makes anti fraud tools fundamentally different from many other risk systems.

Where Anti Fraud Tools Sit in the Bank

Inside a bank, anti fraud tools are deeply embedded across customer journeys.

They operate across:

  • Card payments
  • Online and mobile banking
  • Account logins
  • Password resets
  • Payee changes
  • Domestic transfers
  • Real time payments
  • Merchant transactions

Most customers interact with anti fraud tools without ever knowing it. A transaction approved instantly. A login flagged for extra verification. A payment delayed for review. These are all outputs of fraud decisioning.

When fraud tools work well, customers barely notice them. When they fail, customers notice immediately.

What Anti Fraud Tools Actually Do Day to Day

Anti fraud tools perform a set of core functions continuously.

1. Monitor behaviour in real time

Fraud rarely looks suspicious in isolation. It reveals itself through behaviour.

Anti fraud tools analyse:

  • Login patterns
  • Device usage
  • Location changes
  • Transaction timing
  • Velocity of actions
  • Sequence of events

A single transfer may look normal. A login followed by a password reset, a new payee addition, and a large payment within minutes tells a very different story.

2. Score risk continuously

Rather than issuing a single verdict, anti fraud tools often assign risk scores that change as behaviour evolves.

A customer might be low risk one moment and high risk the next based on:

  • New device usage
  • Unusual transaction size
  • Changes in beneficiary details
  • Failed authentication attempts

These scores guide whether activity is allowed, challenged, delayed, or blocked.

3. Trigger interventions

Anti fraud tools do not just detect. They intervene.

Interventions can include:

  • Stepping up authentication
  • Blocking transactions
  • Pausing accounts
  • Requiring manual review
  • Alerting fraud teams

Each intervention must be carefully calibrated. Too many challenges frustrate customers. Too few create exposure.

4. Support fraud investigations

Not all fraud can be resolved automatically. When cases escalate, anti fraud tools provide investigators with:

  • Behavioural timelines
  • Event sequences
  • Device and session context
  • Transaction histories
  • Risk indicators

The quality of this context determines how quickly teams can respond.

5. Learn from outcomes

Effective anti fraud tools improve over time.

They learn from:

  • Confirmed fraud cases
  • False positives
  • Customer disputes
  • Analyst decisions

This feedback loop is essential to staying ahead of evolving fraud tactics.

Why Fraud Is Harder Than Ever to Detect

Banks face a fraud landscape that is far more complex than a decade ago.

Customers are the new attack surface

Many fraud cases involve customers being tricked rather than systems being hacked. Social engineering has shifted risk from technology to human behaviour.

Speed leaves little room for correction

With instant payments and real time authorisation, fraud decisions must be right the first time.

Fraud and AML are increasingly connected

Scam proceeds often flow into laundering networks. Fraud detection cannot operate in isolation from broader financial crime intelligence.

Criminals adapt quickly

Fraudsters study controls, test thresholds, and adjust behaviour. Static rules lose effectiveness rapidly.

Where Anti Fraud Tools Commonly Fall Short

Even well funded fraud programs encounter challenges.

Excessive false positives

Rules designed to catch everything often catch too much. This leads to customer friction, operational overload, and declining trust in alerts.

Siloed data

Fraud tools that cannot see across channels miss context. Criminals exploit gaps between cards, payments, and digital banking.

Over reliance on static rules

Rules are predictable. Criminals adapt. Without behavioural intelligence, fraud tools fall behind.

Poor explainability

When analysts cannot understand why a decision was made, tuning becomes guesswork and trust erodes.

Disconnected fraud and AML teams

When fraud and AML operate in silos, patterns that span both domains remain hidden.

ChatGPT Image Dec 22, 2025, 10_46_50 AM

What Strong Anti Fraud Capability Looks Like in Practice

Banks with mature fraud programs share several characteristics.

Behaviour driven detection

Rather than relying solely on thresholds, strong tools understand normal behaviour and detect deviation.

Real time decisioning

Fraud systems operate at the speed of transactions, not in overnight batches.

Clear intervention strategies

Controls are tiered. Low risk activity flows smoothly. Medium risk triggers challenges. High risk is stopped decisively.

Analyst friendly investigations

Fraud teams see clear timelines, risk drivers, and supporting evidence without digging through multiple systems.

Continuous improvement

Models and rules evolve constantly based on new fraud patterns and outcomes.

The Intersection of Fraud and AML

Although fraud and AML serve different objectives, they increasingly intersect.

Fraud generates illicit funds.
AML tracks how those funds move.

When fraud tools detect:

  • Scam victim behaviour
  • Account takeover
  • Mule recruitment activity

That intelligence becomes critical for AML monitoring downstream.

Banks that integrate fraud insights into AML systems gain a stronger view of financial crime risk.

Technology’s Role in Modern Anti Fraud Tools

Modern anti fraud tools rely on a combination of capabilities.

  • Behavioural analytics
  • Machine learning models
  • Device intelligence
  • Network analysis
  • Real time processing
  • Analyst feedback loops

The goal is not to replace human judgement, but to focus it where it matters most.

How Banks Strengthen Anti Fraud Capability Without Increasing Friction

Strong fraud programs focus on balance.

Reduce noise first

Lowering false positives improves both customer experience and analyst effectiveness.

Invest in explainability

Teams must understand why decisions are made to tune systems effectively.

Unify data sources

Fraud decisions improve when systems see the full customer journey.

Coordinate with AML teams

Sharing intelligence reduces blind spots and improves overall financial crime detection.

Where Tookitaki Fits in the Fraud Landscape

While Tookitaki is known primarily for AML and financial crime intelligence, its approach recognises the growing convergence between fraud and money laundering risk.

By leveraging behavioural intelligence, network analysis, and typology driven insights, Tookitaki’s FinCense platform helps institutions:

  • Identify scam related behaviours early
  • Detect mule activity that begins with fraud
  • Share intelligence across the financial crime lifecycle
  • Strengthen coordination between fraud and AML teams

This approach supports Australian institutions, including community owned banks such as Regional Australia Bank, in managing complex, cross-domain risk more effectively.

The Direction Anti Fraud Tools Are Heading

Anti fraud tools are evolving in three key directions.

More intelligence, less friction

Better detection means fewer unnecessary challenges for genuine customers.

Closer integration with AML

Fraud insights will increasingly inform laundering detection and vice versa.

Greater use of AI assistance

AI will help analysts understand cases faster, not replace them.

Conclusion

Anti fraud tools are often misunderstood as simple alert engines. In reality, they are among the most critical decision systems inside a bank, operating continuously at the intersection of risk, customer experience, and trust.

Strong anti fraud capability does not come from more rules or louder alerts. It comes from intelligent detection, real time decisioning, clear explainability, and close coordination with broader financial crime controls.

Banks that understand what anti fraud tools actually do, and design their systems accordingly, are better positioned to protect customers, reduce losses, and operate confidently in an increasingly complex risk environment.

Because in modern banking, fraud prevention is not a feature.
It is a discipline.

Anti Fraud Tools: What They Actually Do Inside a Bank
Blogs
22 Dec 2025
6 min
read

Counting the Cost: How AML Compliance is Reshaping Budgets in Singapore

Singapore's financial institutions are spending more than ever to stay compliant — but are they spending smart?

As financial crime grows in sophistication, the regulatory net is tightening. For banks and fintechs in Singapore, Anti-Money Laundering (AML) compliance is no longer a checkbox—it’s a critical function that commands significant investment.

This blog takes a closer look at the real cost of AML compliance in Singapore, why it's rising, and what banks can do to reduce the burden without compromising risk controls.

Talk to an Expert

What is AML Compliance, Really?

AML compliance refers to a financial institution’s obligation to detect, prevent, and report suspicious transactions that may be linked to money laundering or terrorism financing. This includes:

  • Customer Due Diligence (CDD)
  • Transaction Monitoring
  • Screening for Sanctions, PEPs, and Adverse Media
  • Suspicious Transaction Reporting (STR)
  • Regulatory Recordkeeping

In Singapore, these requirements are enforced by the Monetary Authority of Singapore (MAS) through Notices 626 (for banks) and 824 (for payment institutions), among others.

Why is the Cost of AML Compliance Increasing in Singapore?

AML compliance is expensive—and getting more so. The cost drivers include:

1. Expanding Regulatory Requirements

New MAS guidelines around technology risk, ESG-related AML risks, and digital banking supervision add more obligations to already stretched compliance teams.

2. Explosion in Transaction Volumes

With real-time payments (PayNow, FAST) and cross-border fintech growth, transaction monitoring systems must now scale to process millions of transactions daily.

3. Complex Typologies and Threats

Fraudsters are using social engineering, deepfakes, mule networks, and shell companies, requiring more advanced and layered detection mechanisms.

4. High False Positives

Legacy systems often flag benign transactions as suspicious, leading to investigation overload and inefficient resource allocation.

5. Talent Shortage

Hiring and retaining skilled compliance analysts and investigators in Singapore is costly due to demand outpacing supply.

6. Fines and Enforcement Risks

The reputational and financial risk of non-compliance remains high, pushing institutions to overcompensate with manual checks and expensive audits.

Breaking Down the Cost Elements

The total cost of AML compliance includes both direct and indirect expenses:

Direct Costs:

  • Software licensing for AML platforms
  • Customer onboarding (KYC/CDD) systems
  • Transaction monitoring engines
  • Screening databases (sanctions, PEPs, etc.)
  • Regulatory reporting infrastructure
  • Hiring and training compliance staff

Indirect Costs:

  • Operational delays due to manual reviews
  • Customer friction due to false positives
  • Reputational risks from late filings or missed STRs
  • Opportunity cost of delayed product rollouts due to compliance constraints

Hidden Costs: The Compliance Drag on Innovation

One of the less discussed impacts of rising AML costs is the drag on digital transformation. Fintechs and neobanks, which are built for agility, often find themselves slowed down by:

  • Lengthy CDD processes
  • Rigid compliance architectures
  • Manual STR documentation

This can undermine user experience, onboarding speed, and cross-border expansion.

Singapore’s Compliance Spending Compared Globally

While Singapore’s market is smaller than the US or EU, its AML compliance burden is proportionally high due to:

  • Its position as an international financial hub
  • High exposure to cross-border flows
  • Rigorous MAS enforcement standards

According to industry estimates, large banks in Singapore spend between 4 to 7 percent of their operational budgets on compliance, with AML being the single biggest contributor.

ChatGPT Image Dec 22, 2025, 10_05_05 AM

Technology as a Cost-Optimiser, Not Just a Cost Centre

Rather than treating AML systems as cost centres, leading institutions in Singapore are now using intelligent technology to reduce costs while enhancing effectiveness. These include:

1. AI-Powered Transaction Monitoring

  • Reduces false positives by understanding behavioural patterns
  • Automates threshold tuning based on past data

2. Federated Learning Models

  • Learn from fraud and laundering typologies across banks without sharing raw data

3. AI Copilots for Investigations

  • Tools like Tookitaki’s FinMate surface relevant case context and narrate findings automatically
  • Improve investigator productivity by up to 3x

4. Scenario-Based Typologies

  • Enable proactive detection of specific threats like mule networks or BEC fraud

Tookitaki’s Approach to Reducing AML Compliance Costs

Tookitaki’s FinCense platform offers a modular, AI-driven compliance suite purpose-built for financial institutions in Singapore and beyond. Here’s how it helps reduce cost while increasing coverage:

  • Smart Disposition Engine reduces investigation times through natural language summaries
  • Federated AI shares typologies without violating data privacy laws
  • Unified platform for AML and fraud lowers integration and training costs
  • Plug-and-play scenarios allow quick rollout for new threat types

Real-world impact:

  • Up to 72% reduction in false positives
  • 3.5x improvement in analyst productivity
  • Significant savings in training and STR documentation time

How Regulators View Cost vs. Compliance

While MAS expects full compliance, it also encourages innovation and risk-based approaches. Their FinTech Regulatory Sandbox and support for AI-powered RegTech solutions signal a willingness to:

  • Balance oversight with efficiency
  • Encourage public-private collaboration
  • Support digital-first compliance architectures

This is an opportunity for Singapore’s institutions to move beyond traditional, high-cost models.

Five Strategies to Optimise AML Spend

  1. Invest in Explainable AI: Improve detection without creating audit blind spots
  2. Use Federated Typologies: Tap into industry-wide risk intelligence
  3. Unify AML and Fraud: Eliminate duplication in alerts and investigations
  4. Adopt Modular Compliance Tools: Scale capabilities as your institution grows
  5. Train with AI Assistants: Reduce dependency on large teams for investigations

Final Thoughts: From Compliance Cost to Competitive Edge

AML compliance will always involve cost, but the institutions that treat it as a strategic capability rather than a regulatory burden are the ones that will thrive.

With smarter tools, shared intelligence, and a modular approach, Singapore’s financial ecosystem can build a new model—one where compliance is faster, cheaper, and more intelligent.

Counting the Cost: How AML Compliance is Reshaping Budgets in Singapore