Compliance Hub

The Difference between Internal and External Audit

Site Logo
Tookitaki
8 min
read

Internal and external audits play important roles in organizations' financial management and compliance processes. While both types of audits share similar objectives, there are key differences in their scope, reporting structure, and independence. In this article, we will explore these differences and highlight the significance of internal and external audits in organizations. Additionally, we will discuss how Tookitaki, a leading provider of audit software solutions, can support organizations in their internal and external audit processes.

The Role of Internal Audit in Organizations

Internal audit is an essential component of corporate governance that plays a crucial role in ensuring the integrity and transparency of organizational operations. In addition to providing assurance and value-added services, internal audit functions as a strategic partner to senior management, offering insights and recommendations to drive continuous improvement.

Internal auditors are highly skilled professionals who possess a deep understanding of business processes, risks, and controls. They conduct comprehensive assessments of the organization's activities, identifying areas of potential vulnerability and proposing proactive measures to mitigate risks effectively.

{{cta-first}}

Furthermore, internal audit teams collaborate closely with various stakeholders, including external auditors, regulatory bodies, and senior leadership, to foster a culture of accountability and compliance. By staying abreast of emerging industry trends and best practices, internal auditors help organizations adapt to evolving challenges and seize new opportunities for growth and innovation.

Objectives of Internal Audit

The main objectives of internal audit include:

  1. Evaluating the effectiveness of internal controls.
  2. Assessing compliance with regulations, policies, and procedures.
  3. Identifying operational inefficiencies and recommending improvements.
  4. Providing reliable information to management for decision-making.
  5. Monitoring the implementation of corrective actions for identified issues.

Internal audit plays a crucial role in helping organizations achieve their objectives by providing independent and objective assurance on the effectiveness of risk management, control, and governance processes. By evaluating the adequacy and effectiveness of internal controls, internal audit helps organizations mitigate risks and safeguard their assets.

Furthermore, internal audit helps in enhancing the overall efficiency and effectiveness of operations within an organization. By identifying operational inefficiencies and recommending improvements, internal audit contributes to streamlining processes, reducing costs, and enhancing productivity. This proactive approach not only adds value to the organization but also ensures that resources are utilized optimally.

Who should Perform an Internal Audit?

When it comes to performing an internal audit, it is essential to have individuals within the organization who possess the necessary skills and expertise to evaluate the effectiveness of internal controls, risk management, and governance processes. Internal auditors play a critical role in ensuring compliance with laws and regulations, improving operational efficiency, and helping the organization achieve its goals.

Ideally, internal auditors should have a strong understanding of the organization's operations, financial processes, and industry standards. They should also possess analytical skills, attention to detail, and the ability to communicate effectively with key stakeholders. Additionally, a background in accounting, finance, or business administration can be beneficial for those performing internal audits.

Ultimately, the individuals responsible for conducting internal audits should be impartial, objective, and able to provide valuable insights and recommendations for enhancing the organization's internal processes. By having a competent internal audit team in place, organizations can strengthen their governance structure, mitigate risks, and improve overall operational performance.

The Role of External Audit in Organizations

External audit, on the other hand, is conducted by independent professionals who are not employed by the organization. The primary role of external auditors is to express an opinion on whether the financial statements present a true and fair view of the organization's financial position and performance.

External auditors perform detailed examinations of the financial records, transactions, and accounts to provide assurance to stakeholders, such as investors, lenders, and regulatory authorities, regarding the accuracy and reliability of the financial statements.

Furthermore, external audit plays a crucial role in enhancing transparency and accountability within organizations. By conducting an independent review of the financial statements, external auditors help in detecting and preventing financial fraud and errors. This not only safeguards the interests of stakeholders but also contributes to maintaining the overall integrity of the financial reporting process.

In addition to evaluating the financial statements, external auditors also assess the internal controls of an organization. This involves reviewing the systems and processes in place to ensure the accuracy and reliability of financial reporting. By identifying weaknesses in internal controls, external auditors provide valuable recommendations to management on how to strengthen control mechanisms and mitigate risks, ultimately improving the organization's overall governance structure.

Objectives of External Audit

The key objectives of external audit include:

  1. Ensuring compliance with relevant accounting standards and regulations.
  2. Verifying the accuracy and completeness of financial statements.
  3. Assessing the adequacy of internal controls over financial reporting.
  4. Identifying and reporting any material misstatements or fraudulent activities.
  5. Providing an independent opinion on the reliability of financial statements.

External audits play a crucial role in maintaining the integrity and transparency of financial information presented by companies. By scrutinizing financial records and transactions, auditors help in upholding the trust of stakeholders, such as investors, creditors, and regulatory bodies, in the accuracy and fairness of the reported financial data.

Furthermore, external audits serve as a means to enhance corporate governance practices within organizations. Through the evaluation of internal controls and risk management processes, auditors can provide valuable insights and recommendations to improve the overall efficiency and effectiveness of a company's financial reporting mechanisms. This proactive approach not only ensures compliance with laws and regulations but also fosters a culture of accountability and ethical behavior throughout the organization.

Key Differences in Scope between Internal and External Audit

One of the main differences between internal and external audit is their scope. Internal auditors focus on evaluating risks, controls, and processes across the entire organization. They provide insights and recommendations to improve operational efficiency and effectiveness.

Internal auditors also play a crucial role in assessing the organization's governance structure and risk management processes. By conducting regular audits, they help identify areas where the organization may be exposed to potential risks or inefficiencies. This proactive approach allows internal auditors to work closely with management to implement corrective actions and strengthen internal controls.

External auditors, on the other hand, primarily focus on evaluating the accuracy and fairness of the financial statements. They examine financial records, transactions, and accounts to express an opinion on the reliability of the financial statements, specifically regarding compliance with accounting standards and regulations.

External auditors are independent third parties hired by the organization to provide an objective assessment of the financial information presented in the financial statements. Their main goal is to provide assurance to stakeholders, such as investors and creditors, that the financial information is free from material misstatement and fairly presented. External auditors follow specific auditing standards and guidelines to ensure their work is thorough and meets the expectations of regulatory bodies and professional organizations.

The key differences between internal and external audit are captured in the below table:

CriteriaInternal AuditExternal AuditDefinitionInternal audit is conducted by employees of the organization to evaluate the effectiveness of internal controls, risk management, and governance processes.External audit is conducted by an independent third party to provide an objective opinion on the financial statements of the organization.PurposeTo improve internal processes, ensure compliance with laws and regulations, and help achieve organizational goals.To provide assurance to stakeholders that the financial statements are free from material misstatement and present a true and fair view.ScopeBroad scope covering all aspects of the organization's operations, including financial, operational, compliance, and strategic areas.Narrow scope focused primarily on the accuracy and fairness of financial statements.FrequencyOngoing process throughout the year.Conducted annually at the end of the financial year.ReportingReports are submitted to management and the board of directors.Reports are submitted to shareholders, regulators, and other external stakeholders.RegulationsGuided by internal policies and procedures of the organization.Governed by external regulations and standards such as GAAP, IFRS, and the Sarbanes-Oxley Act.IndependenceMay lack full independence as auditors are employees of the organization.High level of independence as auditors are external to the organization.CostGenerally lower cost as it involves internal resources.Higher cost due to hiring independent external auditors.FocusFocuses on improving efficiency and effectiveness of internal processes.Focuses on the accuracy and reliability of financial reporting.

 

Reporting Structure: Internal vs External Audit

In terms of reporting structure, internal auditors typically report to senior management or the board of directors. This reporting line helps ensure their independence and objectivity while promoting effective communication with key stakeholders.

Internal auditors play a crucial role in evaluating and improving the effectiveness of risk management, control, and governance processes within an organization. They conduct regular audits to assess compliance with policies, procedures, and regulations, helping to identify areas for improvement and enhance operational efficiency.

External auditors, on the other hand, report to the shareholders or owners of the organization. Their ultimate responsibility is to provide an unbiased opinion to the stakeholders regarding the accuracy and fairness of the financial statements.

External auditors are typically independent firms hired by the organization to provide an objective assessment of the financial records. They follow specific auditing standards and guidelines to ensure the integrity and reliability of the financial information presented to stakeholders. External audits play a critical role in enhancing investor confidence and maintaining the credibility of the financial reporting process.

Importance of Independence in Internal and External Audit

Independence is crucial for both internal and external auditors to maintain integrity and objectivity in their audits.

For internal auditors, independence involves being free from any influence or bias that could compromise their ability to objectively evaluate and report on the organization's operations. This independence allows internal auditors to provide unbiased insights and recommendations for improvement.

External auditors, on the other hand, must maintain independence from the organization to ensure the credibility of their opinion. They are subject to specific regulatory requirements and professional standards that enforce their independence from the organization and its management.

Internal auditors play a vital role in helping organizations achieve their objectives by evaluating and improving the effectiveness of risk management, control, and governance processes. Their independence allows them to objectively assess the organization's operations and provide valuable recommendations for enhancing efficiency and mitigating risks.

Furthermore, internal auditors often work closely with management to identify areas for improvement and implement best practices. Their independence ensures that their findings and recommendations are unbiased and focused on the long-term success of the organization.

Internal and External Audit Related to AML/CFT

Both internal and external audits play a crucial role in ensuring compliance with anti-money laundering (AML) and counter-terrorist financing (CFT) regulations.

Internal auditors assess the organization's AML/CFT policies, procedures, and controls to identify any weaknesses or gaps. They provide recommendations to strengthen the organization's AML/CFT program and ensure compliance with regulatory requirements.

External auditors, on the other hand, may review the effectiveness of the organization's AML/CFT program as part of their audit procedures. They examine the organization's compliance with AML/CFT regulations and provide an independent assessment of its effectiveness.

Internal auditors typically work within the organization and have a deep understanding of its operations, making them well-suited to identify potential AML/CFT risks. They conduct regular reviews of the organization's AML/CFT program to ensure that it remains effective in detecting and preventing financial crimes.

External auditors, on the other hand, provide an unbiased perspective on the organization's AML/CFT program. They follow specific audit standards and guidelines to evaluate the adequacy of the organization's controls and processes in place to mitigate AML/CFT risks.

{{cta-guide}}

How Tookitaki Can Help with Internal and External Audit

Tookitaki, a leading provider of audit software solutions, offers innovative technologies that can enhance internal and external audits.

Their advanced analytics and automation tools can aid internal auditors in identifying potential risks and inefficiencies faster and more efficiently. The software can analyze large volumes of data, allowing auditors to focus on critical areas and provide valuable insights to management.

Tookitaki's patent-pending explainable AI features revolutionize the audit process by providing transparent and understandable insights into machine learning predictions. By offering glass-box explainability, Tookitaki enables auditors to easily grasp the rationale behind AI-driven decisions, moving away from the traditional black-box approach.

This innovative technology not only enhances audit efficiency but also promotes trust and confidence in the accuracy and reliability of financial reporting. With Tookitaki's advanced analytics and automation tools, internal and external auditors can effectively identify risks, strengthen controls, and improve overall governance structures, ultimately enhancing the integrity and transparency of financial information presented by organizations.

Discover how Tookitaki's FinCense can transform your internal and external audit processes.  Talk to our experts today and take the first step towards a more secure and compliant future with Tookitaki's FinCense.

By submitting the form, you agree that your personal data will be processed to provide the requested content (and for the purposes you agreed to above) in accordance with the Privacy Notice

success icon

We’ve received your details and our team will be in touch shortly.

In the meantime, explore how Tookitaki is transforming financial crime prevention.
Learn More About Us
Oops! Something went wrong while submitting the form.

Ready to Streamline Your Anti-Financial Crime Compliance?

Our Thought Leadership Guides

Blogs
18 Sep 2025
6 min
read

Fraud Detection Using Machine Learning in Banking: Malaysia’s Next Line of Defence

Fraudsters think fast, but machine learning thinks faster.

Malaysia’s Growing Fraud Challenge

Fraud has become one of the biggest threats facing Malaysia’s banking sector. The rise of instant payments, QR codes, and cross-border remittances has created new opportunities for consumers — and for criminals.

Money mule networks are expanding, account takeover fraud is becoming more common, and investment scams continue to claim victims across the country. Bank Negara Malaysia (BNM) has increased its scrutiny, aligning the country more closely with global standards set by the Financial Action Task Force (FATF).

In this climate, banks need smarter systems. Traditional fraud detection methods are no longer enough. To stay ahead, Malaysian banks are turning to fraud detection using machine learning as their next line of defence.

Talk to an Expert

Why Traditional Fraud Detection Falls Short

For decades, banks relied on rule-based fraud detection systems. These systems flag suspicious activity based on pre-defined rules, such as:

  • Transactions above a certain amount
  • Transfers to high-risk jurisdictions
  • Multiple failed login attempts

While useful, rule-based systems have clear limitations:

  • They are static: Criminals quickly learn how to work around rules.
  • They create false positives: Too many legitimate transactions are flagged, overwhelming compliance teams.
  • They are reactive: Rules are only updated after a new fraud pattern is discovered.
  • They lack adaptability: In a fast-changing environment, rigid systems cannot keep pace.

The result is compliance fatigue, higher costs, and gaps that criminals exploit.

How Machine Learning Transforms Fraud Detection

Machine learning (ML) changes the game by allowing systems to learn from data and adapt over time. Instead of relying on static rules, ML models identify patterns and anomalies that may signal fraud.

How ML Works in Banking Fraud Detection

  1. Data Collection
    ML models analyse vast amounts of data, including transaction history, customer behaviour, device information, and geolocation.
  2. Feature Engineering
    Key attributes are extracted, such as transaction frequency, average values, and unusual login behaviour.
  3. Model Training
    Algorithms are trained on historical data, distinguishing between legitimate and fraudulent activity.
  4. Real-Time Detection
    As transactions occur, ML models assign risk scores and flag suspicious cases instantly.
  5. Continuous Learning
    Models evolve by incorporating feedback from confirmed fraud cases, improving accuracy over time.

Supervised vs Unsupervised Learning

  • Supervised learning: Models are trained using labelled data (fraud vs non-fraud).
  • Unsupervised learning: Models identify unusual patterns without prior labelling, useful for detecting new fraud types.

This adaptability is critical in Malaysia, where fraud typologies evolve quickly.

Key Benefits of Fraud Detection Using Machine Learning

The advantages of ML-driven fraud detection are clear:

1. Real-Time Detection

Transactions are analysed instantly, allowing banks to stop fraud before funds are withdrawn or transferred abroad.

2. Adaptive Learning

ML models continuously improve, detecting new scam typologies that rules alone would miss.

3. Improved Accuracy

By reducing false positives, banks save time and resources while improving customer experience.

4. Scalability

Machine learning can handle millions of transactions daily, essential in a high-volume market like Malaysia.

5. Holistic View of Risk

ML integrates multiple data points to create a comprehensive risk profile, spotting complex fraud networks.

Fraud Detection in Malaysia’s Banking Sector

Malaysia faces unique pressures that make ML adoption urgent:

  • Instant payments and QR adoption: DuitNow QR has become a national standard, but speed increases vulnerability.
  • Cross-border laundering risks: Remittance corridors expose banks to international mule networks.
  • Sophisticated scams: Criminals are using social engineering and even deepfakes to deceive customers.
  • BNM expectations: Regulators want financial institutions to adopt proactive, risk-based monitoring.

In short, fraud detection using machine learning is no longer optional. It is a strategic necessity for Malaysia’s banks.

ChatGPT Image Sep 17, 2025, 04_29_19 PM

Step-by-Step: How Banks Can Implement ML-Driven Fraud Detection

For Malaysian banks considering machine learning adoption, the path is practical and achievable:

Step 1: Define the Risk Landscape

Identify the most pressing fraud threats, such as mule accounts, phishing, or account takeover, and align with BNM priorities.

Step 2: Integrate Data Sources

Consolidate transaction, customer, device, and behavioural data into a single framework. ML models thrive on diverse datasets.

Step 3: Deploy Machine Learning Models

Use supervised models for known fraud patterns and unsupervised models for detecting new anomalies.

Step 4: Create Feedback Loops

Feed confirmed fraud cases back into the system to improve accuracy and reduce false positives.

Step 5: Ensure Explainability

Adopt systems that provide clear reasons for alerts. Regulators must understand how decisions are made.

Tookitaki’s FinCense: Machine Learning in Action

This is where Tookitaki’s FinCense makes a difference. Built as the trust layer to fight financial crime, FinCense is an advanced compliance platform powered by AI and machine learning.

Agentic AI Workflows

FinCense uses intelligent AI agents that automate alert triage, generate investigation narratives, and recommend next steps. Compliance teams save hours on each case.

Federated Learning with the AFC Ecosystem

Through the AFC Ecosystem, FinCense benefits from shared intelligence contributed by hundreds of institutions. Malaysian banks gain early visibility into fraud typologies emerging in ASEAN.

Explainable AI

Unlike black-box systems, FinCense provides full transparency. Every flagged transaction includes a clear rationale, making regulator engagement smoother.

End-to-End Fraud and AML Integration

FinCense unifies fraud detection and AML monitoring, offering a single view of risk. This reduces duplication and strengthens overall defences.

ASEAN Market Fit

Scenarios and typologies are tailored to Malaysia’s realities, from QR code misuse to remittance layering.

Scenario Walkthrough: Account Takeover Fraud

Imagine a Malaysian customer’s online banking credentials are stolen through phishing. Fraudsters attempt multiple transfers to mule accounts.

With traditional systems:

  • The activity may only be flagged after large sums are lost.
  • Manual review delays the response.

With FinCense’s ML-powered detection:

  • Unusual login behaviour is flagged immediately.
  • Transaction velocity analysis highlights the abnormal transfers.
  • Federated learning recognises the mule pattern from other ASEAN cases.
  • Agentic AI prioritises the alert, generates a narrative, and recommends blocking the transaction.

Result: The fraud attempt is stopped before funds leave the bank.

Impact on Banks and Customers

The benefits of fraud detection using machine learning extend across the ecosystem:

  • Banks reduce fraud losses and compliance costs.
  • Customers gain confidence in digital banking, encouraging adoption.
  • Regulators see stronger risk management and timely reporting.
  • The economy benefits from increased trust in financial services.

The Road Ahead for ML in Fraud Detection

Looking forward, machine learning will play an even larger role in banking fraud prevention:

  • Integration with open banking data will provide richer insights.
  • AI-powered scams will push banks to deploy equally intelligent defences.
  • Collaboration across borders will become critical, especially in ASEAN.
  • Hybrid AI-human models will balance efficiency with oversight.

Malaysia has the chance to position itself as a regional leader in adopting ML for financial crime prevention.

Conclusion

Fraud detection using machine learning in banking is no longer a futuristic concept. It is the practical, powerful response Malaysia’s banks need today. Traditional rule-based systems cannot keep up with evolving scams, instant payments, and cross-border laundering risks.

With Tookitaki’s FinCense, Malaysian banks gain an industry-leading trust layer that combines machine learning, explainability, and regional intelligence. The future of fraud prevention is here, and it starts with embracing smarter, adaptive technology.

Fraud Detection Using Machine Learning in Banking: Malaysia’s Next Line of Defence
Blogs
18 Sep 2025
6 min
read

Federated Learning in AML: A Smarter Way to Fight Financial Crime in Australia

Federated learning is transforming AML by enabling banks to share intelligence without sharing sensitive data.

Introduction

Financial crime is becoming more sophisticated every year. In Australia, criminals exploit the New Payments Platform (NPP), cross-border corridors, and emerging technologies to launder billions of dollars. Banks and fintechs are under immense pressure from AUSTRAC to detect and report suspicious activity in real time.

Yet no single institution has the complete picture. Criminals spread activity across multiple banks and channels, making it difficult to detect patterns when working in isolation. This is where federated learning in AML comes in. It allows institutions to collaborate on intelligence without exposing customer data, creating a collective shield against money laundering.

Talk to an Expert

What is Federated Learning in AML?

Federated learning is an artificial intelligence technique where multiple parties train a shared model without sharing their raw data. Each institution trains the model locally, and only the model updates — not the underlying data — are shared.

In AML, this means:

  • Banks contribute insights into suspicious patterns.
  • Sensitive customer data remains within each institution.
  • A shared model learns from multiple perspectives, strengthening detection.

It is compliance collaboration without compromising privacy.

Why Australia Needs Federated Learning

1. Fragmented Data

Each bank only sees part of the financial ecosystem. Criminals exploit these gaps by spreading transactions across multiple institutions.

2. Rising Compliance Costs

Institutions are spending billions annually on AML compliance. Shared learning reduces duplication of effort.

3. AUSTRAC’s Push for Innovation

AUSTRAC encourages industry collaboration to strengthen financial crime prevention. Federated learning aligns perfectly with this goal.

4. Real-Time Payment Risks

With NPP and PayTo, money moves instantly. Federated learning enables faster identification of emerging fraud typologies.

5. Protecting Privacy

Australia’s data protection regulations make raw data sharing complex. Federated learning solves this by keeping sensitive data local.

How Federated Learning Works in AML

  1. Local Training
    Each institution trains an AI model on its transaction and customer data.
  2. Model Updates Shared
    Only the learned patterns (model weights) are sent to a central aggregator.
  3. Global Model Improved
    The aggregator combines updates from all banks into a stronger model.
  4. Distribution Back to Banks
    The improved model is sent back to each bank for use in detection.

This cycle repeats, continually improving AML detection across the industry.

ChatGPT Image Sep 17, 2025, 04_00_31 PM

Use Cases of Federated Learning in AML

  1. Mule Account Detection
    Identifies networks of mule accounts across different banks.
  2. Cross-Border Laundering
    Tracks layering activity spread across institutions and jurisdictions.
  3. Fraud Typology Sharing
    Allows banks to learn from each other’s fraud cases without sharing customer data.
  4. Sanctions Screening Enhancement
    Improves detection of high-risk entities that use aliases or complex networks.
  5. Customer Risk Profiling
    Builds more accurate risk scores by learning from industry-wide patterns.

Benefits of Federated Learning in AML

  • Collective Intelligence: Stronger models built from multiple perspectives.
  • Privacy Protection: Raw customer data never leaves the institution.
  • Faster Adaptation: New fraud typologies shared quickly across banks.
  • Cost Efficiency: Reduces duplication of AML technology spend.
  • Regulatory Alignment: Demonstrates proactive industry collaboration.

Challenges of Federated Learning

  • Data Quality: Poor-quality local data reduces model accuracy.
  • Technical Complexity: Requires strong IT infrastructure for secure collaboration.
  • Coordination Barriers: Banks must align on frameworks and standards.
  • Explainability: AI models must remain transparent for AUSTRAC compliance.
  • Adoption Costs: Initial investment can be high for smaller institutions.

Case Example: Community-Owned Banks Driving Innovation

Community-owned banks like Regional Australia Bank and Beyond Bank are early adopters of collaborative compliance models. By leveraging advanced platforms, they can access federated intelligence that strengthens their detection capabilities without requiring massive in-house teams.

Their success shows that federated learning is not only for Tier-1 institutions. Smaller banks can benefit just as much from this collaborative approach.

Spotlight: Tookitaki’s AFC Ecosystem and FinCense

Tookitaki has pioneered federated learning in AML through its AFC Ecosystem and FinCense platform.

  • AFC Ecosystem: A global community of compliance experts contributing real-world scenarios and typologies.
  • Federated Learning Engine: Allows banks to benefit from collective intelligence without sharing raw data.
  • Real-Time Monitoring: Detects suspicious activity across NPP, PayTo, remittance corridors, and crypto.
  • FinMate AI Copilot: Assists investigators with summarised alerts and regulator-ready reports.
  • AUSTRAC-Ready: Generates SMRs, TTRs, and IFTIs with full audit trails.
  • Cross-Channel Coverage: Unifies detection across banking, wallets, cards, remittances, and crypto.

By combining federated learning with Agentic AI, FinCense delivers industry-leading AML capabilities tailored for the Australian market.

Best Practices for Adopting Federated Learning in AML

  1. Start with Partnerships: Collaborate with trusted peers to test federated models.
  2. Focus on Data Quality: Ensure local models are trained on clean, structured data.
  3. Adopt Explainable AI: Maintain regulator confidence by making outputs transparent.
  4. Engage Regulators Early: Keep AUSTRAC informed of federated learning initiatives.
  5. Invest in Infrastructure: Secure, scalable platforms are essential for success.

The Future of Federated Learning in AML

  1. Industry-Wide Collaboration: More banks will join federated networks to share intelligence.
  2. Real-Time Typology Sharing: Federated systems will distribute new fraud scenarios instantly.
  3. Cross-Sector Expansion: Insurers, payment firms, and fintechs will join federated AML networks.
  4. Global Interoperability: Federated learning models will connect across borders.
  5. AI-First Investigations: AI copilots will use federated intelligence to guide case investigations.

Conclusion

Federated learning in AML represents a breakthrough in the fight against financial crime. By combining intelligence from multiple banks without exposing customer data, it creates a collective defence that criminals cannot easily evade.

In Australia, where AUSTRAC demands stronger monitoring and fraudsters exploit instant payments, federated learning provides a powerful solution. Community-owned banks like Regional Australia Bank and Beyond Bank demonstrate that collaboration is possible for institutions of all sizes.

Platforms like Tookitaki’s FinCense are making federated learning a reality, turning compliance from a siloed burden into a shared advantage.

Pro tip: The future of AML will be built on collaboration. Federated learning is the foundation that makes industry-wide intelligence sharing possible.

Federated Learning in AML: A Smarter Way to Fight Financial Crime in Australia
Blogs
17 Sep 2025
6 min
read

The Investigator’s Edge: Why AML Investigation Software Is a Must-Have for Singapore’s Banks

In the fight against financial crime, detection is only half the battle. The real work starts with the investigation.

Singapore’s financial institutions are facing unprecedented scrutiny when it comes to anti-money laundering (AML) compliance. As regulators raise the bar and criminals get smarter, the ability to investigate suspicious transactions swiftly and accurately is now a non-negotiable requirement. This is where AML investigation software plays a critical role.

In this blog, we explore why AML investigation software matters more than ever in Singapore, what features banks should look for, and how next-generation tools are transforming compliance teams from reactive units into proactive intelligence hubs.

Talk to an Expert

Why Investigation Capabilities Matter in AML Compliance

When a transaction monitoring system flags an alert, it kicks off an entire chain of actions. Analysts must determine whether it's a false positive or a genuine case of money laundering. This requires gathering context, cross-referencing multiple systems, documenting findings, and preparing reports for auditors or regulators.

Doing all of this manually is not only time-consuming, but also increases the risk of human error and compliance gaps. For banks operating in Singapore's high-stakes environment, where MAS expects prompt and well-documented responses, this is a risk few can afford.

Key Challenges Faced by AML Investigators in Singapore

1. Alert Overload

Analysts are often overwhelmed by a high volume of alerts, many of which turn out to be false positives. This slows down investigations and increases backlogs.

2. Fragmented Data Sources

Information needed for a single investigation is typically spread across customer databases, transaction logs, sanctions lists, and case notes, making it difficult to form a complete picture quickly.

3. Manual Documentation

Writing investigation summaries and preparing Suspicious Transaction Reports (STRs) can take hours, reducing the time available for deeper analysis.

4. Audit and Regulatory Pressure

MAS and other regulators expect detailed, traceable justifications for every action taken. Missing documentation or inconsistent processes can lead to penalties.

What AML Investigation Software Does

AML investigation software is designed to streamline, standardise, and enhance the process of investigating suspicious activities. It bridges the gap between alert and action.

Core Functions Include:

  • Case creation and automated alert ingestion
  • Intelligent data aggregation from multiple systems
  • Risk scoring and prioritisation
  • Investigation checklists and audit trails
  • Natural language summaries for STR filing
  • Collaborative case review and escalation tools

Must-Have Features in AML Investigation Software

When evaluating solutions, Singaporean banks should look for these critical capabilities:

1. Smart Alert Triage

The system should help investigators prioritise high-risk alerts by assigning risk scores based on factors such as transaction patterns, customer profile, and historical activity.

2. Contextual Data Aggregation

A strong tool pulls in data from across the bank — including core banking systems, transaction logs, KYC platforms, and screening tools — to provide investigators with a consolidated view.

3. Natural Language Summarisation

Leading software uses AI to generate readable, regulator-friendly narratives that summarise key findings, reducing manual work and improving consistency.

4. Audit-Ready Case Management

Every step taken during an investigation should be logged and traceable, including decision-making, reviewer notes, and attached evidence.

5. Integration with STR Reporting Systems

The software should support direct integration with platforms such as GoAML, used in Singapore for suspicious transaction reporting.

ChatGPT Image Sep 17, 2025, 11_47_45 AM

How Tookitaki's FinCense Platform Elevates AML Investigations

Tookitaki’s FinCense platform is designed with Singapore’s regulatory expectations in mind and includes a specialised Smart Disposition Engine for AML investigations.

Key Features:

  • AI Copilot (FinMate)
    Acts as an intelligent assistant that helps compliance teams assess red flags, suggest investigative steps, and provide context for alerts.
  • Smart Narration Engine
    Automatically generates STR-ready summaries, saving hours of manual writing while ensuring consistency and auditability.
  • Unified View of Risk
    Investigators can see customer profiles, transaction history, typologies triggered, and sanction screening results in one interface.
  • Scenario-Based Insight
    Through integration with the AFC Ecosystem, the system maps alerts to real-world money laundering typologies relevant to the region.
  • Workflow Customisation
    Investigation steps, user roles, and escalation logic can be tailored to the bank’s internal policies and team structure.

Benefits for Compliance Teams

By implementing AML investigation software like FinCense, banks in Singapore can achieve:

  • Up to 50 percent reduction in investigation time
  • Enhanced quality and consistency of STRs
  • Faster closure of true positives
  • Lower regulatory risk and better audit outcomes
  • Improved collaboration across compliance, risk, and operations

Checklist: Is Your Investigation Process Ready for 2025?

Ask these questions to evaluate your current system:

  • Are investigators manually pulling data from multiple systems?
  • Is there a standard template for documenting cases?
  • How long does it take to prepare an STR?
  • Can you trace every decision made during an investigation?
  • Are your analysts spending more time writing than investigating?

If any of these answers raise red flags, it may be time to upgrade.

Conclusion: Better Tools Build Stronger Compliance

AML investigation software is no longer a nice-to-have. It is a strategic enabler for banks to stay ahead of financial crime while meeting the rising expectations of regulators, auditors, and customers.

In Singapore's rapidly evolving compliance landscape, banks that invest in smart, AI-powered investigation tools will not only keep up. They will lead the way.

Ready to take your AML investigations to the next level? The future is intelligent, integrated, and investigator-first.

The Investigator’s Edge: Why AML Investigation Software Is a Must-Have for Singapore’s Banks