Compliance Hub

Understanding Financial Crime Compliance: A Comprehensive Guide

Site Logo
Tookitaki
15 Jan 2021
10 min
read

The financial sector, constituting banks and other financial institutions, is a significant target for criminals who aim to exploit the sector for personal gain. Therefore, the need for financial crime compliance is more crucial than ever. Financial crime compliance (FCC) is a critical subject that financial institutions can't afford to ignore. The stakes are incredibly high, with both reputational and financial damages hanging in the balance. 

According to a study by McKinsey, in 2018, the World Economic Forum noted that fraud and financial crime was a trillion-dollar industry. It was reported that private companies spent a sum of around $8.2 billion on anti-money laundering (AML) controls in 2017 alone.

In this comprehensive guide, we will explore what financial crime compliance is, its types, global importance, challenges, and solutions. We will also discuss how Tookitaki's cutting-edge solutions can help institutions navigate the complex FCC landscape.

{{cta-first}}

What is financial crime compliance?

Financial crime can be defined as illegal activities aimed at deceiving financial institutions for personal or organizational financial gain. These crimes are typically carried out by individuals, groups, or criminal organizations. The impact of such activities extends beyond financial loss, affecting the social and emotional well-being of individuals and damaging the reputation of organizations.

Financial Crime Compliance (FCC) is akin to the security detail for a VIP event—it safeguards the integrity of the financial system by ensuring that laws are followed, and unethical practices are stamped out. Financial crime compliance in banking involves a series of internal policies, procedures, and systems designed to detect and prevent activities that could involve money laundering, fraud, or other financial crimes.

The aim is not just to catch wrongdoers but also to create an environment where they're less likely to try their illicit activities in the first place. Much like how well-lit streets and visible policing deter crime in a city, effective FCC in banking and other financial institutions seeks to dissuade financial crimes from occurring within the banking system.

Types of financial crimes

When we talk about financial crimes, we are not referring to just a single type of illicit activity. Financial crimes come in various flavours, each with its own level of complexity and harm. Common examples of financial crimes include, but are not limited to:

Here are the detailed explanations of some of the most prevalent financial crimes:

  • Money Laundering: This is like taking "dirty money" from illegal activities and trying to clean it up by putting it through a series of transactions that make it hard to trace back to its original source. Imagine you have paint on your hands and you wash them multiple times so no one can tell you were painting; that's similar to what money laundering does, but with illegally obtained money.
  • Fraud: This is tricking someone to get something valuable from them, usually money. Think of it like pretending to be a magician who can turn paper into gold; you take people's money for the "magic trick," but there's no gold at the end—just you running away with their money.
  • Tax Evasion: This is when someone lies to the government to avoid paying their fair share of taxes. Imagine you earned 100 candies from a game, but you tell the game master you only earned 50 so that you don't have to share as much. That's similar to tax evasion, but instead of candies, it's money, and instead of a game master, it's the government.
  • Embezzlement: This is taking money that you were trusted to manage for a company or another person and keeping it for yourself. Imagine being given the job of holding onto a friend's lunch money but then spending it on yourself. In the business world, it's the same idea but usually involves a lot more money and is illegal.
  • Identity Theft: This is when someone pretends to be you to get things they want, like money or services, and leaves you to deal with the mess. Imagine if someone found your lost school ID, dressed up like you, and then took all the cookies from your school's cookie jar, leaving everyone to think you did it. In the adult world, they're stealing more than cookies—they're stealing your financial identity.

Imagine if your banking details were a house; these crimes are like burglars trying to break in through different doors and windows.

Importance of Global Financial Crime Compliance

The impact of financial crimes isn't limited to a specific geography; it's a global concern that has far-reaching consequences. Money laundered in one country can finance terrorism in another. Financial crimes can also destabilize economies and undermine democracy. Therefore, achieving global compliance is more than just checking off boxes; it’s about making the financial world a safer place.

Financial institutions also have a vested interest in robust FCC programs. Strong compliance mechanisms not only prevent hefty fines but also bolster the institution's reputation, which in turn can drive customer trust and business growth.

With financial crime and fraud turning into a trillion-dollar industry, the need for financial crime compliance is paramount. According to a report by Thomson Reuters, the cost of organized financial crimes was estimated at a staggering $1.45 trillion in 2018, and nearly 50% of large APAC organizations have fallen victim to financial crimes.

Financial Crime Compliance in Banking

Financial crime compliance in banking is critical in safeguarding economies against various illicit activities. From money laundering to fraud, banks are constantly at risk of falling victim to these crimes. With the global impact of financial crimes, achieving compliance is not just a regulatory requirement but a necessity to maintain the integrity of the banking system. By identifying vulnerabilities, assessing risks, and implementing mitigation measures, banks can strengthen their defences against financial crimes and uphold the trust of their customers.

Financial Crime Compliance Challenges

Ensuring compliance is not a cakewalk. Here are some challenges that institutions often face:

  • Regulatory Landscape: Imagine trying to steer a ship through a sea that's constantly changing — new islands appear, old ones vanish, and the weather changes in an instant. That's what it's like trying to keep up with the flood of new financial regulations that come out. Companies have to be agile, always ready to adjust their practices to stay on the right side of the law. It's challenging but absolutely necessary to avoid penalties and legal trouble.
  • Data Management: Think about having a library that's so big you can't see the end of it. In this massive library, some books might be misplaced, torn, or even filled with incorrect information. Managing data is like being the librarian of that never-ending library. You have to make sure every "book" or data point is in its right place, in good condition, and above all, trustworthy. A single misplaced "book" could lead to bad decisions or even financial disasters.
  • Technological Limitations: Imagine trying to complete a jigsaw puzzle with missing or damaged pieces. Older technology systems can be like that puzzle — they make the job harder than it needs to be. These outdated systems may not be able to catch the sophisticated tricks criminals use, which means they're not just inconvenient; they can be a serious risk to your business. Upgrading to newer technology can provide more complete "puzzle pieces," making it easier to see the big picture of financial risks.
  • High Compliance Costs: The cost of compliance increases with the number of jurisdictions in which an entity operates. The average cost to meet regulatory compliance is estimated to be around $5.5 million, while the cost of non-compliance is around $15 million.

Each challenge can potentially act like a loophole for financial criminals to exploit, and it takes significant effort and investment to seal these gaps.

What is Financial Crime Risk Management (FCRM)

Financial Crime Risk Management (FCRM) is the tactical arm of FCC. While FCC sets the rules, FCRM works on the ground to ensure those rules are followed. It involves risk assessments, technology solutions, and personnel training. It's like having a specialized SWAT team, only this one fights financial criminals.

FCRM is your first line of defense in recognizing and mitigating risks. It's how you ensure that policies are more than just words on paper; they are actionable strategies that offer real-world protection.

Mitigating Financial Crime: Effective Strategies

Mitigating financial crime requires financial institutions to identify vulnerabilities and implement controls and systems to prevent such crimes. This can include real-time transaction monitoring, global watchlist screening, and KYC risk profiling.

Financial institutions are obligated to verify the identities of their customers, understand their business, and assess potential criminal risks. Key components include:

  • Customer Identification Program (CIP): A critical requirement during customer onboarding, it entails collecting customer information such as full name, date and place of birth, address, and identification number.
  • Customer Due Diligence (CDD): CDD involves collecting personal information, identifying a customer through documents or biometrics, and checking customer data against the database for document verification.
  • Enhanced Due Diligence (EDD): EDD involves additional checks for high-risk customers, including more documents, additional database verifications, and frequent identity verification.

Phases of Financial Crime Risk Mitigation

  • Identification: This is like being a detective who's looking for clues. In this phase, you're keeping an eye out for things that seem odd or suspicious. Maybe there are transactions happening at weird times of the day, or money is going to places known for illegal activities. The goal is to spot these "clues" before they turn into real problems.
  • Assessment: After you've gathered all your clues or risk factors, the next step is to figure out which ones are the most urgent or dangerous. Think of it like a hospital triage system: Not every patient needs immediate attention, but some are more critical than others. By assessing the risks, you get to decide which financial "symptoms" need the most immediate treatment.
  • Mitigation: Now that you know what you're up against, it's time to take action. This is where you put in safety measures to lower the risks. Maybe you set up software that flags suspicious transactions, or perhaps you put more checks in place for funds going to risky locations. The aim is to put barriers in the way of would-be criminals.
  • Review: Finally, the world of financial crime isn't static; it's always changing. New scams and methods of illegal money flow come up all the time. So, you have to keep checking and updating your safety measures. Think of it like updating your home security system; as new types of break-in methods evolve, you need to update your locks and alarms.

Each phase is crucial to ensure that your financial crime compliance program stays effective and up-to-date.

Financial Crime Compliance Solutions

Given the complexity and dynamism of financial crimes, off-the-shelf solutions often fall short. Hence, institutions are increasingly looking towards customized, AI-driven solutions. These tools can process large volumes of data quickly, are adaptable to changing regulations, and are capable of identifying sophisticated criminal patterns.

How Tookitaki Can Help with Financial Crime Compliance

Tookitaki’s innovative Anti-Money Laundering Suite (AMLS) is a comprehensive solution that redefines the compliance landscape for banks and fintech entities. It offers unmatched risk coverage, precise detection accuracy, and a remarkable reduction in false alerts. By leveraging modules like Transaction Monitoring, Smart Screening, Dynamic Risk Scoring, and Case Manager, AMLS empowers institutions with sharper detection capabilities, more efficient customer due diligence, and centralized AML operations. It significantly reduces the total cost of ownership for AML compliance, enabling institutions to allocate resources more efficiently.

Tookitaki's groundbreaking AFC Ecosystem complements AMLS by fostering a community-based approach to combating financial crime. This visionary platform facilitates the sharing of typologies and best practices among industry experts. It empowers financial institutions with exhaustive AML risk coverage, enhanced scalability, and faster time-to-market for new typologies. By breaking down silos and unlocking hidden risks, the AFC Ecosystem revolutionizes how institutions collaborate and stay ahead of financial criminals. Together, AMLS and the AFC Ecosystem form an unbeatable duo, offering financial institutions the tools they need to navigate the complex landscape of financial crime compliance with confidence and efficiency.

{{cta-ebook}}

Conclusion

Financial crime compliance is an evolving field that requires continuous vigilance, cutting-edge technology, and a proactive approach. Organizations must keep updating and refining their financial crime compliance strategies to safeguard not just against regulatory penalties but also to protect their reputation and foster customer trust. 

With the right technology partners like Tookitaki, achieving excellence in financial crime compliance becomes a far more attainable goal. After all, in a world fraught with financial risks, a robust financial crime compliance program is not just a regulatory requirement but a business imperative.

Frequently Asked Questions (FAQs)

What are the key components of a strong FCC program?

A strong FCC program comprises thorough risk assessment, effective policies, cutting-edge technology solutions, and continuous monitoring.

How do AI and machine learning help in FCC?

AI and machine learning help by quickly processing vast amounts of data to identify suspicious activities and reduce false positives.

What is the role of employee training in FCC?

Proper employee training ensures that staff are well-versed in regulatory requirements, enhancing the efficacy of the financial crime compliance program.

How can Tookitaki further strengthen my organization's FCC?

Tookitaki's adaptive software solutions are tailored to meet your institution's specific compliance needs, providing advanced screening, monitoring, risk assessments, and actionable insights that go beyond mere compliance to offer true business value.

By submitting the form, you agree that your personal data will be processed to provide the requested content (and for the purposes you agreed to above) in accordance with the Privacy Notice

success icon

We’ve received your details and our team will be in touch shortly.

In the meantime, explore how Tookitaki is transforming financial crime prevention.
Learn More About Us
Oops! Something went wrong while submitting the form.

Ready to Streamline Your Anti-Financial Crime Compliance?

Our Thought Leadership Guides

Blogs
14 Aug 2025
5 min
read

Smarter Investigations: The Rise of AML Investigation Tools in Australia

In the battle against financial crime, the right AML investigation tools turn data overload into actionable intelligence.

Australian compliance teams face a constant challenge — growing transaction volumes, increasingly sophisticated money laundering techniques, and tighter AUSTRAC scrutiny. In this environment, AML investigation tools aren’t just nice-to-have — they’re essential for turning endless alerts into fast, confident decisions.

Talk to an Expert

Why AML Investigations Are Getting Harder in Australia

1. Explosion of Transaction Data

With the New Payments Platform (NPP) and cross-border corridors, institutions must monitor millions of transactions daily.

2. More Complex Typologies

From mule networks to shell companies, layering techniques are harder to detect with static rules alone.

3. Regulatory Expectations

AUSTRAC demands timely and accurate Suspicious Matter Reports (SMRs). Delays or incomplete investigations can lead to penalties and reputational damage.

4. Resource Constraints

Skilled AML investigators are in short supply. Teams must do more with fewer people — making efficiency critical.

What Are AML Investigation Tools?

AML investigation tools are specialised software platforms that help compliance teams analyse suspicious activity, prioritise cases, and document findings for regulators.

They typically include features such as:

  • Alert triage and prioritisation
  • Transaction visualisation
  • Entity and relationship mapping
  • Case management workflows
  • Automated reporting capabilities

Key Features of Effective AML Investigation Tools

1. Integrated Case Management

Centralise all alerts, documents, and investigator notes in one platform.

2. Entity Resolution & Network Analysis

Link accounts, devices, and counterparties to uncover hidden connections in laundering networks.

3. Transaction Visualisation

Graph-based displays make it easier to trace fund flows and identify suspicious patterns.

4. AI-Powered Insights

Machine learning models suggest likely outcomes, surface overlooked anomalies, and flag high-risk entities faster.

5. Workflow Automation

Automate repetitive steps like KYC refresh requests, sanctions re-checks, and document retrieval.

6. Regulator-Ready Reporting

Generate Suspicious Matter Reports (SMRs) and audit logs that meet AUSTRAC’s requirements.

ChatGPT Image Aug 13, 2025, 12_27_28 PM

Why These Tools Matter in Australia’s Compliance Landscape

  • Speed: Fraud and laundering through NPP happen in seconds — investigations need to move just as fast.
  • Accuracy: AI-driven tools reduce false positives, ensuring analysts focus on real threats.
  • Compliance Assurance: Detailed audit trails prove that due diligence was carried out thoroughly.

Use Cases in Australia

Case 1: Cross-Border Layering Detection

An Australian bank flagged multiple small transfers to different ASEAN countries. The AML investigation tool mapped the network, revealing links to a known mule syndicate.

Case 2: Crypto Exchange Investigations

AML tools traced a high-value Bitcoin-to-fiat conversion back to an account flagged in a sanctions database, enabling rapid SMR submission.

Advanced Capabilities to Look For

Federated Intelligence

Access anonymised typologies and red flags from a network of institutions to spot emerging threats faster.

Embedded AI Copilot

Assist investigators in summarising cases, recommending next steps, and even drafting SMRs.

Scenario Simulation

Test detection scenarios against historical data before deploying them live.

Spotlight: Tookitaki’s FinCense and FinMate

FinCense integrates investigation workflows directly into its AML platform, while FinMate, Tookitaki’s AI investigation copilot, supercharges analyst productivity.

  • Automated Summaries: Generates natural language case narratives for internal and regulatory reporting.
  • Risk Prioritisation: Highlights the highest-risk cases first.
  • Real-Time Intelligence: Pulls in global typology updates from the AFC Ecosystem.
  • Full Transparency: Glass-box AI explains every decision, satisfying AUSTRAC’s audit requirements.

With FinCense and FinMate, Australian institutions can cut investigation times by up to 50% — without compromising quality.

Conclusion: From Data to Decisions — Faster

The volume and complexity of alerts in modern AML programmes make manual investigation unsustainable. The right AML investigation tools transform scattered data into actionable insights, helping compliance teams stay ahead of both criminals and regulators.

Pro tip: Choose tools that not only investigate faster, but also learn from every case — making your compliance programme smarter over time.

Smarter Investigations: The Rise of AML Investigation Tools in Australia
Blogs
13 Aug 2025
5 min
read

Smarter Defences: How Machine Learning is Transforming Fraud Detection in Philippine Banking

Fraud in banking has never been faster, smarter, or more relentless — and neither have the defences.

In the Philippines, the rapid rise of digital banking, mobile wallets, and instant payments has created unprecedented opportunities for growth — and for fraudsters. From account takeovers to synthetic identity scams, financial institutions are under constant attack. Traditional rule-based detection systems, while useful, are no longer enough. Enter machine learning (ML) — the technology redefining fraud detection by spotting suspicious activity in real time and adapting to new threats before they cause damage.

Talk to an Expert

The Growing Fraud Threat in Philippine Banking

Digital banking adoption in the Philippines has surged in recent years, driven by initiatives like the BSP’s Digital Payments Transformation Roadmap and the expansion of fintech services. While these advancements boost financial inclusion, they also open the door to fraud.

According to the Bankers Association of the Philippines, reported cyber fraud incidents have increased steadily, with phishing, account takeover (ATO), and card-not-present (CNP) fraud among the top threats.

Key trends include:

  • Instant payment exploitation: Fraudsters leveraging PESONet and InstaPay for rapid fund transfers.
  • Social engineering scams: Convincing victims to disclose personal and banking details.
  • Cross-border fraud networks: Syndicates funnelling illicit funds via multiple jurisdictions.

In this environment, speed, accuracy, and adaptability are critical — qualities where ML excels.

Why Traditional Fraud Detection Falls Short

Rule-based fraud detection systems rely on predefined scenarios (e.g., flagging transactions over a certain threshold or unusual logins from different IP addresses). While they can catch known patterns, they struggle with:

  • Evolving tactics: Fraudsters quickly adapt once they know the rules.
  • False positives: Too many alerts waste investigator time and frustrate customers.
  • Lack of contextual awareness: Rules can’t account for the nuances of customer behaviour.

This is where machine learning transforms the game.

How Machine Learning Enhances Fraud Detection

1. Pattern Recognition Beyond Human Limits

ML models can process millions of transactions in real time, identifying subtle anomalies in behaviour — such as unusual transaction timing, frequency, or geolocation.

2. Continuous Learning

Unlike static rules, ML systems learn from new data. When fraudsters switch tactics, the model adapts, ensuring defences stay ahead.

3. Reduced False Positives

ML distinguishes between legitimate unusual behaviour and true fraud, cutting down on unnecessary alerts. This not only saves resources but improves customer trust.

4. Predictive Capability

Advanced algorithms can predict the likelihood of a transaction being fraudulent based on historical and behavioural data, enabling proactive intervention.

ChatGPT Image Aug 13, 2025, 12_05_50 PM

Key Machine Learning Techniques in Banking Fraud Detection

Supervised Learning

Models are trained using labelled datasets — past transactions marked as “fraud” or “legitimate.” Over time, they learn the characteristics of fraudulent activity.

Unsupervised Learning

Used when there’s no labelled data, these models detect outliers and anomalies without prior examples, ideal for spotting new fraud types.

Reinforcement Learning

The system learns by trial and error, optimising decision-making as it receives feedback from past outcomes.

Natural Language Processing (NLP)

NLP analyses unstructured data such as emails, chat messages, or KYC documents to detect potential fraud triggers.

Real-World Fraud Scenarios in the Philippines Where ML Makes a Difference

  1. Account Takeover (ATO) Fraud – ML flags login attempts from unusual devices or geolocations while analysing subtle session behaviour patterns.
  2. Loan Application Fraud – Models detect inconsistencies in credit applications, cross-referencing applicant data with external sources.
  3. Payment Mule Detection – Identifying suspicious fund flows in real time, such as rapid inbound and outbound transactions in newly opened accounts.
  4. Phishing-Driven Transfers – Correlating unusual fund movement with compromised accounts reported across multiple banks.

Challenges in Implementing ML for Fraud Detection in the Philippines

  • Data Quality and Availability – ML models need vast amounts of clean, structured data. Gaps or inaccuracies can reduce effectiveness.
  • Regulatory Compliance – BSP regulations require explainability in AI models; “black box” ML can be problematic without interpretability tools.
  • Talent Gap – Limited availability of data science and ML experts in the local market.
  • Integration with Legacy Systems – Many Philippine banks still run on legacy infrastructure, complicating ML deployment.

Best Practices for Deploying ML-Based Fraud Detection

1. Start with a Hybrid Approach

Combine rule-based and ML models initially to ensure smooth transition and maintain compliance.

2. Ensure Explainability

Use explainable AI (XAI) frameworks so investigators and regulators understand why a transaction was flagged.

3. Leverage Federated Learning

Share intelligence across institutions without exposing raw data, enhancing detection of cross-bank fraud schemes.

4. Regular Model Retraining

Update models with the latest fraud patterns to stay ahead of evolving threats.

5. Engage Compliance Early

Work closely with risk and compliance teams to align ML use with BSP guidelines.

The Tookitaki Advantage: The Trust Layer to Fight Financial Crime

Tookitaki’s FinCense platform is built to help Philippine banks combat fraud and money laundering with Agentic AI — an advanced, explainable AI framework aligned with global and local regulations.

Key benefits for fraud detection in banking:

  • Real-time risk scoring on every transaction.
  • Federated intelligence from the AFC Ecosystem to detect emerging fraud typologies seen across the region.
  • Lower false positives through adaptive models trained on both local and global data.
  • Explainable decision-making that meets BSP requirements for transparency.

By combining advanced ML techniques with collaborative intelligence, FinCense gives banks in the Philippines the tools they need to protect customers, meet compliance standards, and reduce operational costs.

Conclusion: Staying Ahead of the Curve

Fraudsters in the Philippines are becoming more sophisticated, faster, and harder to trace. Relying on static, rules-only systems is no longer an option. Machine learning empowers banks to detect fraud in real time, reduce false positives, and adapt to ever-changing threats — all while maintaining compliance.

For institutions aiming to build trust in a rapidly digitising market, the path forward is clear: invest in ML-powered fraud detection now, and make it a core pillar of your risk management strategy.

Smarter Defences: How Machine Learning is Transforming Fraud Detection in Philippine Banking
Blogs
13 Aug 2025
5 min
read

Stopping Fraud in Its Tracks: The Future of Transaction Fraud Detection in Singapore

Fraud doesn’t knock—it slips through unnoticed until it’s too late.

As digital payments accelerate across Singapore, financial institutions face a mounting challenge: detecting fraudulent transactions in real time, without slowing down legitimate users. From phishing scams and mule accounts to synthetic identities and account takeovers, transaction fraud has become smarter, faster, and harder to catch.

This blog explores how transaction fraud detection is evolving in Singapore, the gaps still present in legacy systems, and how AI-driven tools are helping financial institutions fight back.

Talk to an Expert

Why Transaction Fraud Detection Is Critical in Singapore

Singapore’s position as a fintech hub comes with exposure to increasingly sophisticated fraud schemes. According to the Singapore Police Force, scam-related crimes in 2024 accounted for over 70% of all crimes reported, with transaction fraud and unauthorised transfers making up a large portion of the losses.

The government’s drive for real-time payments — from PayNow to FAST — adds pressure on banks and fintechs to detect fraud instantly, without delaying genuine transactions.

Missed fraud isn’t just a financial risk — it erodes trust. And in Singapore’s tightly regulated environment, trust is everything.

Types of Transaction Fraud Facing Financial Institutions

Understanding the tactics fraudsters use is the first step toward stopping them. In Singapore, common forms of transaction fraud include:

1. Account Takeover (ATO)

Fraudsters use stolen credentials to gain control over an account and initiate transfers, bill payments, or cash withdrawals — often within minutes.

2. Social Engineering Scams

Victims are tricked into authorising payments themselves under false pretences — for example, investment scams, job scams, or fake relationships.

3. Money Muling

Fraudsters use mule accounts — often belonging to unsuspecting individuals — to route stolen or laundered funds through multiple hops.

4. Real-Time Payment Exploits

With instant transfer systems, once funds are sent, they’re often impossible to recover. Fraudsters exploit this urgency and invisibility.

5. Business Email Compromise (BEC)

Corporate payments are manipulated through phishing or spoofing attacks, redirecting funds to illicit accounts under false vendor names.

ChatGPT Image Aug 13, 2025, 11_14_07 AM

Challenges in Transaction Fraud Detection

Despite investment in fraud controls, many Singaporean financial institutions still face persistent roadblocks:

1. High False Positives

Basic rules-based systems raise alerts for normal user behaviour, overwhelming fraud teams and increasing friction for genuine customers.

2. Lack of Real-Time Detection

Many systems rely on batch processing or delayed scoring, leaving gaps for fraudsters to exploit instant payment rails.

3. Inability to Detect Novel Patterns

Fraudsters constantly change tactics. Systems that only recognise known fraud signatures are easily bypassed.

4. Poor Cross-Border Visibility

Singapore is deeply integrated into global financial flows. A lack of insight into transaction trails beyond borders makes it harder to detect layered laundering and syndicated fraud.

What Effective Transaction Fraud Detection Looks Like Today

Modern fraud detection is about being predictive, not just reactive. Here's what best-in-class solutions offer:

AI + Machine Learning

Rather than using only static rules, intelligent systems learn from historical patterns, adapt to new behaviours, and improve accuracy over time.

Behavioural Profiling

These systems build user profiles based on login patterns, spending habits, device data, and more — flagging anything outside the norm in real time.

Network Analysis

Sophisticated fraud often involves mule networks or linked entities. Graph analysis helps identify suspicious linkages between accounts.

Federated Intelligence Sharing

Platforms like Tookitaki’s AFC Ecosystem allow institutions to benefit from typologies and red flags contributed by others — without sharing sensitive data.

Explainable AI

Regulators require transparency. Solutions must explain why a transaction was flagged, not just that it was.

How Tookitaki Is Powering Smarter Fraud Detection

Tookitaki’s FinCense platform is purpose-built to detect transaction fraud in real time. Here’s how it helps Singapore-based institutions stay ahead:

  • Agentic AI Framework: Modular AI agents continuously scan transactions, user behaviour, and risk context to identify fraud patterns — even emerging ones.
  • Scenario-Based Detection: Leverages real-world fraud scenarios from the AFC Ecosystem, including scams unique to Southeast Asia like fake job recruitment and QR-enabled mule layering.
  • Real-Time Simulation & Threshold Optimisation: Before deploying rules, institutions can simulate detection impact to reduce false positives.
  • Smart Disposition Engine: AI-generated summaries assist investigators by surfacing key risk insights for flagged transactions.
  • Federated Learning: Combines privacy-preserving AI with community-sourced intelligence for faster, more adaptive detection.

Whether you’re a digital bank, a payment gateway, or a traditional financial institution, FinCense provides the flexibility, speed, and accuracy needed for the Singaporean fraud landscape.

Key Strategies for Singaporean Firms to Strengthen Fraud Defences

1. Upgrade From Rule-Based to Hybrid Systems

A combination of dynamic rules and machine learning provides greater precision and adaptability.

2. Focus on Early Detection

Identify mule accounts, layered transfers, and behaviour anomalies before the fraud is completed.

3. Enable Seamless Analyst Workflows

Reduce alert fatigue with AI-driven prioritisation and investigation summaries.

4. Join Intelligence-Sharing Networks

Collaborate with platforms like the AFC Ecosystem to keep up with evolving fraud typologies.

5. Design for Real-Time Action

Ensure that fraud decisions can be made in milliseconds — and tie detection systems directly to block/hold actions.

Conclusion: Fraudsters Are Getting Smarter. Are You?

In Singapore’s fast-moving financial ecosystem, transaction fraud detection is no longer just a compliance function — it’s a competitive advantage.

Banks and fintechs that invest in modern, intelligent fraud prevention are not only protecting their bottom line — they’re protecting their brand and customer relationships.

📌 The future of fraud detection is proactive, predictive, and powered by community-led intelligence. Don’t just keep up — get ahead.

Stopping Fraud in Its Tracks: The Future of Transaction Fraud Detection in Singapore