Compliance Hub

Examples of Money Laundering and How to Prevent It

Site Logo
Tookitaki
8 min
read

Money laundering is a serious financial crime where criminals disguise the origins of illicit funds, making them appear legally earned. This process fuels illegal activities such as drug trafficking, fraud, and terrorism, posing a major risk to global financial systems. To combat this, governments and regulatory agencies have strengthened anti-money laundering (AML) measures to detect and prevent suspicious transactions.

The money laundering process typically involves three key stages:

Placement – Illicit funds are introduced into the financial system through businesses, casinos, or bank deposits.
Layering – The money is moved through multiple transactions, such as offshore accounts, shell companies, and cryptocurrency exchanges, to obscure its origin.
Integration – The funds are reinvested into the economy via real estate, luxury goods, or corporate investments, making them appear legitimate.

Understanding examples of money laundering is crucial in recognizing how criminals exploit financial systems. By analyzing real-world cases, businesses, financial institutions, and regulators can enhance their detection strategies and implement stricter AML policies. In this blog, we’ll explore notable examples of money laundering and discuss effective prevention methods to protect the financial sector.

Money Laundering and How to Prevent It

Common Methods of Money Laundering

Money laundering schemes exploit various industries and financial systems to disguise illicit funds as legitimate income. Criminals continuously evolve their tactics, making it crucial for businesses and financial institutions to stay ahead of these threats. Below are some examples of money laundering techniques commonly used today:

Cash Business Money Laundering

Cash-intensive businesses such as restaurants, laundromats, and car washes are frequent targets for money laundering. These businesses handle high volumes of cash, making it easy to blend illicit funds with legitimate earnings.

Example of Money Laundering in Cash Businesses:
A restaurant records $4,000 in daily revenue but only generates $2,000 from actual sales. The additional $2,000 comes from illegal activities, allowing criminals to deposit it into bank accounts undetected. Financial institutions use transaction monitoring and industry benchmarking to flag discrepancies between reported revenue and expected cash flow.

Real Estate Money Laundering

Real estate transactions provide an effective way for criminals to clean dirty money by purchasing properties and reselling them at a later date. Fraudsters often use shell companies or third-party buyers to mask their true identities.

Example of Money Laundering in Real Estate:
A criminal purchases a luxury property using a shell company, ensuring anonymity. Over time, the property appreciates in value, providing a profitable and seemingly legitimate return. A well-known case involves Zamira Hajiyeva, who laundered illicit funds through high-value real estate in London.

To prevent real estate money laundering, financial institutions and regulators are enforcing stricter due diligence requirements, such as Know Your Customer (KYC) checks and Ultimate Beneficial Owner (UBO) verification.

Gambling Money Laundering

Casinos and online gambling platforms are frequently exploited for money laundering activities due to the high volume of cash transactions. Criminals buy gambling chips, play minimally, and cash out, creating a legitimate-looking paper trail.

Example of Money Laundering in Gambling:
A fraudster purchases $50,000 worth of casino chips using illicit funds, places a few small bets, and then cashes out the remaining chips as "winnings." These funds are now considered clean and can be deposited into a bank.

With the rise of online gambling, criminals can exploit multiple accounts, using different aliases to evade detection. Anti-money laundering (AML) measures in the gambling industry include enhanced transaction monitoring, player profiling, and reporting suspicious activity to financial regulators.

{{cta-whitepaper}}

Cryptocurrency Laundering

Cryptocurrencies provide a pseudo-anonymous and decentralized way to move money across borders, making them an attractive tool for money laundering schemes. Criminals use techniques like mixing/tumbling services and smurfing to obscure transaction trails.

Example of Money Laundering in Cryptocurrency:
A fraudster splits $500,000 into thousands of smaller Bitcoin transactions (smurfing) and routes them through cryptocurrency mixers to blend illicit funds with legitimate transactions. Once complete, the cleaned funds are withdrawn and used for legal investments.

Although regulators have increased oversight with Know Your Customer (KYC) and Anti-Money Laundering (AML) requirements for exchanges, crypto-based money laundering remains a growing challenge.

Art Money Laundering

The art market’s lack of price transparency and high-value, private transactions make it a perfect vehicle for money laundering. Criminals purchase expensive artwork with illicit funds, later selling it through legitimate auction houses to create clean earnings.

Example of Money Laundering in Art:
A fraudster buys a rare painting for $1 million using dirty money and resells it for the same amount at an auction house, effectively laundering the funds. The anonymous nature of art deals makes it difficult to trace the money’s origin.

To combat art money laundering, regulators now require dealers and auction houses to conduct due diligence, report suspicious transactions, and verify the identities of buyers and sellers.

Legal Framework and Examples of Money Laundering Offences in ASEAN

Money laundering is a serious financial crime with strict regulations across ASEAN countries to prevent illicit funds from infiltrating the financial system. Governments in the region have strengthened anti-money laundering (AML) laws to combat financial crime and ensure compliance with international standards set by the Financial Action Task Force (FATF).

Below are key examples of money laundering offences and the legal frameworks governing them in ASEAN.

Concealing Offense

A concealing offence occurs when an individual hides, disguises, transfers, or removes illicit funds to make them appear legitimate. Criminals often use offshore accounts, cryptocurrency transactions, and trade-based money laundering techniques to cover their tracks.

Example of a Money Laundering Offence:
A syndicate transfers illegally obtained funds through multiple offshore bank accounts in Singapore and Malaysia, layering transactions to avoid detection.

📜 Legal Frameworks in ASEAN:

  • Singapore: Corruption, Drug Trafficking, and Other Serious Crimes (Confiscation of Benefits) Act (CDSA)
  • Malaysia: Anti-Money Laundering, Anti-Terrorism Financing and Proceeds of Unlawful Activities Act (AMLA)
  • Philippines: Anti-Money Laundering Act (AMLA)
  • Thailand: Anti-Money Laundering Act B.E. 2542 (1999)

Arranging Offense

An arranging offence occurs when a person facilitates the movement or control of illicit funds for another party. Even if someone merely suspects the money is from an illegal source but still enables the transaction, they can be held accountable.

Example of a Money Laundering Offence:
A company in Thailand sets up fake supplier contracts to launder money through legitimate-looking business transactions. The funds are then transferred to various bank accounts across Malaysia, Indonesia, and Vietnam to obscure their true origin.

📜 Legal Frameworks in ASEAN:

  • Singapore: Monetary Authority of Singapore (MAS) AML Guidelines
  • Malaysia: Central Bank of Malaysia (BNM) AML Regulations
  • Thailand: Anti-Money Laundering Office (AMLO) Guidelines
  • Indonesia: Law No. 8 of 2010 on the Prevention and Eradication of Money Laundering

Acquisition, Use, or Possession Offense

This offence applies when an individual knowingly acquires, uses, or possesses funds from illicit activities. Even if they did not directly launder the money, they can still face legal consequences.

Example of a Money Laundering Offence:
A high-profile individual in the Philippines buys luxury properties and cars using funds traced to corruption and fraud schemes. The purchases are flagged by AML authorities for further investigation.

📜 Legal Frameworks in ASEAN:

  • Philippines: Anti-Money Laundering Council (AMLC) Regulations
  • Singapore: Financial Services and Markets Act (FSMA)
  • Malaysia: Securities Commission Malaysia AML Guidelines
  • Vietnam: Law on Anti-Money Laundering No. 14/2022/QH15

How Financial Institutions Can Prevent Money Laundering

Financial institutions are the first line of defence against money laundering, playing a crucial role in detecting, reporting, and preventing illicit financial activities. Strengthening anti-money laundering (AML) compliance not only ensures regulatory adherence but also protects the integrity of the financial system.

Here are key steps financial institutions must take to prevent money laundering effectively:

Implement Robust Know Your Customer (KYC) Measures

KYC verification is the foundation of AML compliance, ensuring financial institutions identify and assess customer risk before allowing transactions.

Key KYC Requirements:
✔ Collect and verify government-issued IDs, proof of address, and financial documents
✔ Conduct Enhanced Due Diligence (EDD) for high-risk customers, including politically exposed persons (PEPs)
✔ Monitor customers from high-risk jurisdictions and industries
✔ Periodically update customer records to reflect changes in risk profiles

Many ASEAN countries, including Singapore, Malaysia, and the Philippines, mandate strong KYC procedures to comply with FATF guidelines.

Conduct Ongoing Transaction Monitoring

Real-time transaction monitoring enables financial institutions to detect suspicious activity before money laundering occurs. Advanced AI-powered AML systems analyze transaction patterns, flagging high-risk activities such as:

Red Flags for Money Laundering:
✔ Unusual cash deposits or frequent transactions just below reporting thresholds
✔ Rapid fund transfers between multiple jurisdictions or shell accounts
✔ High-value transactions involving high-risk countries or offshore accounts
✔ Inconsistent transaction behaviour compared to customer profiles

Solution:
Financial institutions should invest in AI-driven AML platforms capable of detecting unusual patterns and generating automated alerts for risk analysis.

Integrate AML Systems with Other Financial Systems

A siloed approach to AML and fraud detection weakens a financial institution’s defences. Integrated AML solutions allow banks and fintech companies to:

✔ Cross-check customer activities across financial services, credit reports, and digital wallets
✔ Detect inconsistencies in transaction history, avoiding blind spots in risk assessment
✔ Automate fraud detection by leveraging shared intelligence across financial institutions

For example, in Singapore and Malaysia, regulators encourage financial institutions to adopt AI-driven compliance solutions for real-time AML risk assessment.

Regularly Update Screening Lists

Sanctions and blacklists evolve constantly, and failure to update screening databases can expose financial institutions to compliance risks and penalties.

Essential AML Screening Lists:
✔ FATF Blacklist & Greylist – Countries with weak AML enforcement
✔ ASEAN Financial Intelligence Units (FIUs) – National risk databases from countries like Singapore, Thailand, and Indonesia
✔ UN & OFAC Sanctions Lists – Identifies high-risk individuals and entities

Best Practice: Implement automated sanctions screening tools to ensure real-time updates and prevent transactions with sanctioned individuals or organizations.

Provide Continuous AML Training & Employee Awareness

Human oversight is essential in identifying money laundering activities that automated systems might miss. Financial institutions must train employees to:

✔ Recognize red flags in customer transactions and account activities
✔ Stay informed on emerging money laundering techniques such as crypto mixing services and trade-based laundering
✔ Follow FATF AML guidelines and local financial crime laws

Example: In the Philippines, the Anti-Money Laundering Council (AMLC) requires financial institutions to conduct regular AML compliance training for staff to strengthen detection and reporting.

{{cta-first}}

Conduct Independent AML Audits & Compliance Reviews

Regular AML audits ensure that financial institutions remain compliant with evolving regulations and identify gaps in AML controls before regulatory fines occur.

Key AML Audit Measures:
✔ Third-party AML audits to assess compliance gaps
✔ Testing of transaction monitoring systems to improve accuracy
✔ Review of suspicious activity reports (SARs) and risk assessments

ASEAN Focus: Singapore’s Monetary Authority of Singapore (MAS) and Malaysia’s Bank Negara Malaysia (BNM) require regular AML compliance audits for banks and financial institutions.

Final Thoughts: Strengthening AML Defenses Against Money Laundering

Money laundering is a global financial crime that not only enables fraud, corruption, and organized crime but also undermines the stability of financial institutions and economies. Criminals continuously evolve their laundering techniques, using cash businesses, real estate, gambling, cryptocurrencies, and art to disguise illicit funds.

To effectively combat money laundering, financial institutions and regulatory bodies must:

✅ Enhance transaction monitoring to detect suspicious activities in real-time
✅ Strengthen KYC & AML compliance to prevent financial crime at the source
✅ Integrate AI-driven AML solutions to improve fraud detection and reduce false positives
✅ Adopt a proactive approach by leveraging cross-border intelligence and regulatory collaboration

Future-Proof Your AML Strategy with Tookitaki

Staying ahead of evolving financial crimes requires cutting-edge technology and collective intelligence. Tookitaki’s FinCense platform empowers financial institutions with:
✔ AI-powered transaction monitoring to detect complex laundering patterns
✔ Federated learning for AML to enhance risk detection across global financial networks
✔ A dynamic AFC Ecosystem that continuously updates money laundering scenarios based on real-world trends

By submitting the form, you agree that your personal data will be processed to provide the requested content (and for the purposes you agreed to above) in accordance with the Privacy Notice

success icon

We’ve received your details and our team will be in touch shortly.

In the meantime, explore how Tookitaki is transforming financial crime prevention.
Learn More About Us
Oops! Something went wrong while submitting the form.

Ready to Streamline Your Anti-Financial Crime Compliance?

Our Thought Leadership Guides

Blogs
20 Jan 2026
6 min
read

What Makes the Best AML Software? A Singapore Perspective

“Best” isn’t about brand—it’s about fit, foresight, and future readiness.

When compliance teams search for the “best AML software,” they often face a sea of comparisons and vendor rankings. But in reality, what defines the best tool for one institution may fall short for another. In Singapore’s dynamic financial ecosystem, the definition of “best” is evolving.

This blog explores what truly makes AML software best-in-class—not by comparing products, but by unpacking the real-world needs, risks, and expectations shaping compliance today.

Talk to an Expert

The New AML Challenge: Scale, Speed, and Sophistication

Singapore’s status as a global financial hub brings increasing complexity:

  • More digital payments
  • More cross-border flows
  • More fintech integration
  • More complex money laundering typologies

Regulators like MAS are raising the bar on detection effectiveness, timeliness of reporting, and technological governance. Meanwhile, fraudsters continue to adapt faster than many internal systems.

In this environment, the best AML software is not the one with the longest feature list—it’s the one that evolves with your institution’s risk.

What “Best” Really Means in AML Software

1. Local Regulatory Fit

AML software must align with MAS regulations—from risk-based assessments to STR formats and AI auditability. A tool not tuned to Singapore’s AML Notices or thematic reviews will create gaps, even if it’s globally recognised.

2. Real-World Scenario Coverage

The best solutions include coverage for real, contextual typologies such as:

  • Shell company misuse
  • Utility-based layering scams
  • Dormant account mule networks
  • Round-tripping via fintech platforms

Bonus points if these scenarios come from a network of shared intelligence.

3. AI You Can Explain

The best AML platforms use AI that’s not just powerful—but also understandable. Compliance teams should be able to explain detection decisions to auditors, regulators, and internal stakeholders.

4. Unified View Across Risk

Modern compliance risk doesn't sit in silos. The best software unifies alerts, customer profiles, transactions, device intelligence, and behavioural risk signals—across both fraud and AML workflows.

5. Automation That Actually Works

From auto-generating STRs to summarising case narratives, top AML tools reduce manual work without sacrificing oversight. Automation should support investigators, not replace them.

6. Speed to Deploy, Speed to Detect

The best tools integrate quickly, scale with your transaction volume, and adapt fast to new typologies. In a live environment like Singapore, detection lag can mean regulatory risk.

The Danger of Chasing Global Rankings

Many institutions fall into the trap of selecting tools based on brand recognition or analyst reports. While useful, these often prioritise global market size over local relevance.

A top-ranked solution may not:

  • Support MAS-specific STR formats
  • Detect local mule account typologies
  • Allow configuration without vendor dependence
  • Offer support in your timezone or regulatory context

The best AML software for Singapore is one that understands Singapore.

The Role of Community and Collaboration

No tool can solve financial crime alone. The best AML platforms today are:

  • Collaborative: Sharing anonymised risk signals across institutions
  • Community-driven: Updated with new scenarios and typologies from peers
  • Connected: Integrated with ecosystems like MAS’ regulatory sandbox or industry groups

This allows banks to move faster on emerging threats like pig-butchering scams, cross-border laundering, or terror finance alerts.

ChatGPT Image Jan 20, 2026, 10_31_21 AM

Case in Point: A Smarter Approach to Typology Detection

Imagine your institution receives a surge in transactions through remittance corridors tied to high-risk jurisdictions. A traditional system may miss this if it’s below a certain threshold.

But a scenario-based system—especially one built from real cases—flags:

  • Round dollar amounts at unusual intervals
  • Back-to-back remittances to different names in the same region
  • Senders with low prior activity suddenly transacting at volume

The “best” software is the one that catches this before damage is done.

A Checklist for Singaporean Institutions

If you’re evaluating AML tools, ask:

  • Can this detect known local risks and unknown emerging ones?
  • Does it support real-time and batch monitoring across channels?
  • Can compliance teams tune thresholds without engineering help?
  • Does the vendor offer localised support and regulatory alignment?
  • How well does it integrate with fraud tools, case managers, and reporting systems?

If the answer isn’t a confident “yes” across these areas, it might not be your best choice—no matter its global rating.

Final Thoughts: Build for Your Risk, Not the Leaderboard

Tookitaki’s FinCense platform embodies these principles—offering MAS-aligned features, community-driven scenarios, explainable AI, and unified fraud and AML coverage tailored to Asia’s compliance landscape.

There’s no universal best AML software.

But for institutions in Singapore, the best choice will always be one that:

  • Supports your regulators
  • Reflects your risk
  • Grows with your customers
  • Learns from your industry
  • Protects your reputation

Because when it comes to financial crime, it’s not about the software that looks best on paper—it’s about the one that works best in practice.

What Makes the Best AML Software? A Singapore Perspective
Blogs
19 Jan 2026
5 min
read

AML Case Management Software: A Practical Guide for Banks and Fintechs

Financial institutions today face an uncomfortable reality. Detecting suspicious activity is no longer the hardest part of AML. Managing, investigating, documenting, and closing alerts at scale is. This is where AML case management software plays a critical role.

As alert volumes rise and regulatory expectations tighten, banks and fintechs need more than rule engines and dashboards. They need a structured, auditable, and efficient way to move from alert to closure. This guide explains what AML case management software is, why it matters, and how modern, AI-enabled platforms are reshaping investigations.

Talk to an Expert

What Is AML Case Management?

AML case management refers to the process and technology used to manage alerts, investigations, evidence, and regulatory outcomes once suspicious activity has been detected.

In simple terms:

  • Transaction monitoring flags alerts
  • Case management turns alerts into investigations
  • Investigations lead to decisions, documentation, and reporting

A case management system provides investigators with a central workspace to:

  • Review alerts
  • Gather and assess evidence
  • Collaborate with other teams
  • Document findings
  • Prepare regulatory reports such as STRs or SARs

Without a robust case management layer, even the best detection systems quickly become operational bottlenecks.

Why AML Case Management Matters More Than Ever

Alert volumes are increasing

Real-time payments, digital wallets, and cross-border transactions have dramatically increased alert volumes. Manual investigation processes simply do not scale.

Investigators are under pressure

Compliance teams face growing workloads, tight deadlines, and intense regulatory scrutiny. Inefficient workflows lead to:

  • Alert backlogs
  • Investigator fatigue
  • Inconsistent decision-making

Regulators expect stronger documentation

Supervisors increasingly expect:

  • Clear audit trails
  • Consistent investigation logic
  • Explainable decisions supported by evidence

AML case management software sits at the centre of these challenges, acting as the operational backbone of compliance teams.

Core Capabilities of AML Case Management Software

A modern AML case management platform typically includes the following capabilities:

Case creation and prioritisation

Alerts are automatically converted into cases, enriched with customer, transaction, and risk context. Risk-based prioritisation helps investigators focus on the most critical cases first.

Investigation workflows

Structured workflows guide investigators through each stage of the investigation, reducing variability and missed steps.

Evidence management

Documents, transaction records, screenshots, and notes are stored centrally within each case, ensuring nothing is lost or fragmented across systems.

Collaboration and escalation

Cases often require input from multiple teams. Case management software enables collaboration, escalation, and approvals within a controlled environment.

Audit trails and traceability

Every action taken on a case is logged, creating a defensible audit trail for internal reviews and regulatory examinations.

How AI Is Transforming AML Case Management

Traditional case management systems focused primarily on task tracking. Modern platforms are moving much further by embedding intelligence directly into investigations.

Assisted investigations

AI can surface relevant transactions, related parties, and historical patterns, reducing manual data gathering.

Smart workflows

Automation helps route cases, trigger actions, and apply consistent investigation steps based on risk level.

Faster alert closure

By reducing repetitive tasks and guiding investigators, AI-enabled case management significantly improves closure times without compromising quality.

The result is not fewer controls, but better, faster, and more consistent investigations.

Regulatory Expectations and Audit Readiness

From an examiner’s perspective, a strong AML programme is not just about detecting suspicious activity. It is about how decisions are made and documented.

AML case management software supports regulatory expectations by enabling:

  • Consistent investigation logic
  • Complete documentation of decisions
  • Easy retrieval of historical cases
  • Clear linkage between alerts, evidence, and outcomes

This is especially important during regulatory reviews, where institutions must demonstrate not only what decisions were made, but why.

ChatGPT Image Jan 17, 2026, 12_53_47 PM

How Banks and Fintechs Use AML Case Management in Practice

In a typical investigation flow:

  1. An alert is generated by the monitoring system
  2. A case is created and assigned automatically
  3. The investigator reviews contextual data and risk indicators
  4. Evidence is gathered and assessed within the case
  5. A decision is made, documented, and approved
  6. Regulatory reports are prepared if required
  7. The case is closed with a complete audit trail

Case management software ensures this process is repeatable, defensible, and scalable, even as volumes grow.

How Modern AML Platforms Approach Case Management

Modern AML platforms are increasingly embedding case management directly into their compliance architecture. Rather than treating investigations as a separate, manual process, leading solutions integrate case management with transaction monitoring and screening to create a continuous investigation workflow.

For example, Tookitaki’s FinCense platform integrates case management with transaction monitoring and screening, enabling investigators to move seamlessly from alert generation to investigation, documentation, and closure within a single workflow. This integrated approach helps institutions improve investigation efficiency while maintaining strong audit trails and regulatory readiness.

Choosing the Right AML Case Management Software

When evaluating AML case management solutions, institutions should look beyond basic task tracking.

Key considerations include:

  • Seamless integration with transaction monitoring and screening systems
  • Support for risk-based workflows
  • Strong audit and reporting capabilities
  • AI-assisted investigation features
  • Flexibility to adapt to local regulatory requirements

The goal is not just operational efficiency, but long-term compliance resilience.

Final Thoughts

AML case management software is no longer a supporting tool. It is a core pillar of modern AML operations.

As financial crime grows more complex, institutions that invest in intelligent, well-structured case management are better positioned to:

  • Reduce operational strain
  • Improve investigation quality
  • Meet regulatory expectations with confidence

In the broader AML ecosystem, case management is where detection becomes decision-making — and where compliance teams either struggle or succeed.

AML Case Management Software: A Practical Guide for Banks and Fintechs
Blogs
16 Jan 2026
5 min
read

From Firefighting to Foresight: Rethinking Transaction Fraud Prevention in Singapore

Fraudsters are playing a smarter game, shouldn’t your defences be smarter too?

Transaction fraud in Singapore is no longer just a security issue—it’s a strategic challenge. As payment ecosystems evolve, fraudsters are exploiting digital rails, behavioural loopholes, and siloed detection systems to slip through unnoticed.

In this blog, we explore why traditional fraud prevention methods are falling short, what a next-gen transaction fraud prevention framework looks like, and how Singapore’s financial institutions can future-proof their defences.

Talk to an Expert

Why Transaction Fraud is Escalating in Singapore

Singapore has one of the most advanced digital banking infrastructures in the world. But with innovation comes risk.

Key Drivers of Fraud Risk:

  • Real-time payments: PayNow and FAST leave little time for fraud detection.
  • Cross-border flows: Illicit funds are moved via remittance corridors and fintech platforms.
  • Proliferation of fintech apps: Fraudsters exploit weak KYC and transaction monitoring in niche apps.
  • Evolving scam tactics: Social engineering, deepfake impersonation, and phishing are on the rise.

The result? Singaporean banks are experiencing a surge in mule account activity, identity theft, and layered fraud involving multiple platforms.

What is Transaction Fraud Prevention?

Transaction fraud prevention refers to systems, strategies, and intelligence tools used by financial institutions to:

  • Detect fraudulent transactions
  • Stop or flag suspicious activity in real time
  • Reduce customer losses
  • Comply with regulatory expectations

The key is prevention, not just detection. This means acting before money is moved or damage is done.

Traditional Fraud Prevention: Where It Falls Short

Legacy fraud prevention frameworks often rely on:

  • Static rule-based thresholds
  • After-the-fact detection
  • Manual reviews for high-value alerts
  • Limited visibility across products or platforms

The problem? Fraud today is fast, adaptive, and complex. These outdated approaches miss subtle patterns, overwhelm investigators, and delay intervention.

A New Framework for Transaction Fraud Prevention

Next-gen fraud prevention combines speed, context, intelligence, and collaboration.

Core Elements:

1. Real-Time Transaction Monitoring

Every transaction is assessed for risk as it happens—across all payment channels.

2. Behavioural Risk Models

Fraud detection engines compare current actions against baseline behaviour for each customer.

3. AI-Powered Risk Scoring

Advanced machine learning models assign dynamic risk scores that influence real-time decisions.

4. Federated Typology Sharing

Institutions access fraud scenarios shared by peer banks and regulators without exposing sensitive data.

5. Graph-Based Network Detection

Analysts visualise connections between mule accounts, devices, locations, and beneficiaries.

6. Integrated Case Management

Suspicious transactions are directly escalated into investigation pipelines with enriched context.

Real-World Examples of Preventable Fraud

✅ Utility Scam Layering

Scammers use stolen accounts to pay fake utility bills, then request chargebacks to mask laundering. These can be caught through layered transaction patterns.

✅ Deepfake CEO Voice Scam

A finance team almost transfers SGD 500,000 after receiving a video call from a “CFO.” Behavioural anomalies and device risk profiling can flag this in real-time.

✅ Organised Mule Account Chains

Funds pass through 8–10 sleeper accounts before exiting the system. Graph analytics expose these as coordinated rather than isolated events.

The Singapore Edge: Localising Fraud Prevention

Fraud patterns in Singapore have unique characteristics:

  • Local scam syndicates often use SingPass and SMS spoofing
  • Elderly victims targeted through impersonation scams
  • Fintech apps used for layering due to fewer controls

A good fraud prevention system should reflect:

  • MAS typologies and alerts
  • Red flags derived from real scam cases
  • Adaptability to local payment systems like FAST, PayNow, GIRO
ChatGPT Image Jan 16, 2026, 11_40_33 AM

How Tookitaki Enables Smart Transaction Fraud Prevention

Tookitaki’s FinCense platform offers an integrated fraud and AML prevention suite that:

  • Monitors transactions in real-time using adaptive AI and federated learning
  • Supports scenario-based detection built from 1,200+ community-contributed typologies
  • Surfaces network-level risk signals using graph analytics
  • Auto-generates case summaries for faster STR filing and reporting
  • Reduces false positives while increasing true fraud detection rates

With FinCense, banks are moving from passive alerts to proactive intervention.

Evaluating Transaction Fraud Prevention Software: Key Questions

  • Can it monitor all transaction types in real time?
  • Does it allow dynamic threshold tuning based on risk?
  • Can it integrate with existing AML or case management tools?
  • Does it use real-world scenarios, not just abstract rules?
  • Can it support regulatory audits with explainable decisions?

Best Practices for Proactive Fraud Prevention

  1. Combine fraud and AML views for holistic oversight
  2. Use shared typologies to learn from others’ incidents
  3. Deploy AI responsibly, ensuring interpretability
  4. Flag anomalies early, even if not yet confirmed as fraud
  5. Engage fraud operations teams in model tuning and validation

Looking Ahead: Future of Transaction Fraud Prevention

The future of fraud prevention is:

  • Predictive: Using AI to simulate fraud before it happens
  • Collaborative: Sharing signals across banks and fintechs
  • Contextual: Understanding customer intent, not just rules
  • Embedded: Integrated into every step of the payment journey

As Singapore’s financial sector continues to grow in scale and complexity, fraud prevention must keep pace—not just in technology, but in mindset.

Final Thoughts: Don’t Just Detect—Disrupt

Transaction fraud prevention is no longer just about stopping bad transactions. It’s about disrupting fraud networks, protecting customer trust, and reducing operational cost.

With the right strategy and systems in place, Singapore’s financial institutions can lead the region in smarter, safer finance.

Because when money moves fast, protection must move faster.

From Firefighting to Foresight: Rethinking Transaction Fraud Prevention in Singapore