50 Shocking Statistics About Money Laundering and Cryptocurrency
Money laundering is a financial crime that relies on stealth and flying under the radar. Understandably, detection poses a significant challenge in this field. Historians think that the term money laundering originated from the Italian mafia, specifically by Al Capone. During the 1920s and 30s, Capone and his associates would buy laundromats (where ‘laundering’ comes from) to mask profits made from illegal activities such as prostitution and selling bootlegged liquor. The statistics about money laundering are difficult to assess given the secretive nature of the crime.
Money laundering legislation has been created and implemented in countries all over the globe, and global organisations such as the United Nations Office on Drugs and Crime (UNODC) and the Financial Action Task Force (FATF) regulate the global banking industry’s activities. Yet money laundering remains a threat and a phenomenon that is hard to track. Despite its incognito nature, there are some statistical insights available on this global crime that costs the world around USD 2 trillion every year.
Statistics on Money Laundering
- In 2009, the estimated global success rate of money laundering controls was a mere 0.2% (according to the UN and US State Department)
- Authorities intercepted USD 3.1 billion worth of laundered money in 2009. Over 80% of which was seized in North America (UN estimate)
- The estimated global spending on AML compliance-related fines was USD 10 Billion in 2014.
- Globally, banks have spent an estimated USD 321 billion in fines since 2008 for failing to comply with regulatory standards, facilitating money laundering, terrorist financing, and market manipulation.
- In 2019, banks paid more than USD 6.2 billion in AML fines globally.
- FIU has categorised 9,500 non-banking financial companies (out of an estimated 11,500 registered) as ‘high-risk financial institutions’, indicating non-compliance, as of 2018.
- As of 2020, the USA was deemed compliant for 9 and largely compliant for 22 out of 40 FATF recommendations.
- In India as of 2018, approximately 884 companies are on high alert for money laundering and assets worth INR 50 billion. They are being probed under the Prevention of Money Laundering Act (PMLA 2002).
- From 2016-17, searches were conducted in money laundering 161 cases filed under PMLA
- As of 2018, India was deemed compliant for 4 of the core 40 +9 FATF recommendations, largely compliant for 25, and non-compliant for 5 out of 6 core recommendations.
- The estimated amount of total money laundered annually around the world is 2-5% of the global GDP (USD 800 Billion – 2 trillion)
- In 2009, total spending on illicit financial activities like money laundering was 3.6% of the global GDP, with USD 1.6 trillion laundered (according to the UNODC)
- Over 200,000 cases of money laundering are reported to the authorities in the UK annually.
- About 50% of cases of money laundering reported in Latin America are by financial firms.
- According to the government of India, approximately USD 18 billion is lost through money laundering each year.
- A 1996 report published by Chulalongkorn University in Bangkok estimated that a figure equal to 15% of the country’s GDP ($28.5 billion) was illegally laundered money.
- In the UK, the total penalties from June 2017 to April 2019 on anti-money laundering non-compliance was £241,233,671.
- Iran stands at the top of the Anti-Money Laundering (AML) risk index with a score of 8.6, the world’s highest. Afghanistan comes second with a score of 8.38, while Guinea-Bissau comes 3rd with a score of 8.35.
- Mexican drug cartels launder at least USD 9 billion (5% of the country’s GDP) each year
- Money laundering takes up about 1.2% of the EU’s total GDP.
- Completing the Know Your Customer (KYC) process usually costs banks around USD 62 million.
- 88% of consumers say their perception of a business is improved when a business invests in the customer experience, especially finance and security.

Cryptocurrency Money Laundering Statistics
The cryptocurrency space presented an unexplored and unfamiliar territory to AML regulators and still remains so in some parts of the world. However, many governments such as Japan, Singapore, Malaysia, China, the U.S.A, and Spain, among others, have been actively regulating the crypto market in their countries.
While crypto regulations for anti-money laundering are relatively new, some statistical insights into this newly formed industry are available.
- Europol (financial analyst agency) claims that the Bitcoin mixer laundered 27,000 Bitcoins (valued at over $270 Million), since its launch in May 2018.
- Research shows that the total amount of money laundered through Bitcoin since its inception in 2009 is about USD 4.5 Billion.
- 97% of ransomware catalogued in 2019 demanded payment in Bitcoin.
- The UK-based crypto firm, Bottle Pay ceased operations in 2019 due to the regulatory requirements prescribed by the 5th Anti-Money Laundering Directive. The firm closed down operations after raising USD 2 million because it did not agree with the KYC requirements outlined in 5AMLD.
- In the first five months of 2020, crypto thefts, hacks, and frauds totalled $1.36 billion, indicating 2020 could see the greatest total amount stolen in crypto crimes exceeding 2019’s $4.5 billion.
- The global average of direct criminal funds received by exchanges dropped 47% in 2019. (Darknet marketplace)
- In the first five months of 2020, crypto thefts, hacks, and frauds totalled $1.36 billion.
- Though the total value collected by criminals from crypto crimes is among the highest recorded, the global average of criminal funds sent directly to exchanges dropped 47% in 2019.
- 57% of FATF-approved Virtual Asset Service Providers (VASPs) still have weak, porous anti-money laundering measures. Their AML solutions and KYC processes fall at the weak end of the required standard.
- Japan reported over 7,000 cases of money laundering via cryptocurrencies in 2018.
- Only 0.17% of funds received by crypto exchanges in 2019 were sent directly from criminal sources.

Anti-money Laundering Software Market
With money laundering methods evolving at a rapid pace and regulatory compliance requirements adapting to combat them, AML Software has become an indispensable part of any institution’s Anti-money Laundering process. The Regtech market for AML software is growing at a strong rate.
- The global anti-money laundering software market was valued at $879.0 million in 2017 and is projected to reach $2,717.0 million by 2025.
- 44% of banks reported an increase of 5–10% in their AML and BSA budgets and are expected to increase their spending by 11-20% in 2017.

Fraud
Another financial crime that is quite a common occurrence, fraud also poses a problem for financial institutions and their clients across the world. Fraud and money laundering have an unseen connection.
Money that is acquired through fraudulent means often needs to be laundered to be usable and accepted in the mainstream economy. Fraud and money laundering may not seem related at first sight, but they certainly are. Here are a few statistics on fraud across the world.
- 47% of Americans have had their card information compromised at some point and have been victim to credit card fraud
- 21% of Americans have faced debit card fraud
- Credit card fraud amounts to around USD 22 billion globally
- 47% of the world’s credit card fraud cases occur in the US
- 69% of scams occur when the consumer is approached via telephone or email
- Credit card fraud increased by 18.4% last year and is on the rise
- Identity theft makes up 14.8% of all reported fraud cases
- Worldwide financial institutions paid fines amounting to USD 24.26 billion last year due to payment fraud
- Identity theft represents about 14.8 per cent of consumer fraud complaints with reports of 444,602 reported cases in 2018
- Identity fraudsters robbed USD16 billion from 12.7 million U.S. consumers in 2014
- They stole USD18 billion in the U.S. in 2013
- The total number of cases of fraud in 2019 was 650,572
- The end of July 2020 showed over 150,000 COVID-19-related fraud threats
- In 2019, almost 165 million records containing personal data were exposed through fraud-related data breaches
- Identity theft is most common for consumers aged between 20-49 years
To know how Tookitaki combats money laundering and other financial crimes with cutting-edge technology, speak to one of our experts today.
Experience the most intelligent AML and fraud prevention platform
Experience the most intelligent AML and fraud prevention platform
Experience the most intelligent AML and fraud prevention platform
Top AML Scenarios in ASEAN

The Role of AML Software in Compliance

The Role of AML Software in Compliance


We’ve received your details and our team will be in touch shortly.
Ready to Streamline Your Anti-Financial Crime Compliance?
Our Thought Leadership Guides
Stopping Fraud in Its Tracks: The Rise of Intelligent Transaction Fraud Prevention Solutions
Fraud today moves faster than ever — your defences should too.
Introduction
Fraud has evolved into one of the fastest-moving threats in the financial ecosystem. Every second, millions of digital transactions move across payment rails — from e-wallet transfers and QR code payments to online banking and card purchases. In the Philippines, where digital adoption is soaring and consumers rely heavily on mobile-first financial services, fraudsters are exploiting every weak point in the system.
The challenge?
Traditional fraud detection tools were never designed for this world.
They depend on static rules, slow batch processes, and outdated logic. Fraudsters, meanwhile, use automation, spoofed identities, social engineering, and well-coordinated mule networks to slip through the cracks.
This is why transaction fraud prevention solutions have become mission-critical. They combine behavioural intelligence, machine learning, network analytics, and real-time decision engines to identify and stop fraud before the money moves — not after.
The financial institutions that invest in these next-generation systems aren’t just preventing losses; they are building trust, improving customer experience, and strengthening long-term resilience.

Why Transaction Fraud Is Increasing in the Philippines
The Philippines is one of Southeast Asia’s most digitally active markets, with millions of users relying on online wallets, mobile banking, and instant payments. This growth, while positive, has also created an ideal environment for fraud.
1. Rise of Social Engineering Scams
Investment scams, “love scams,” phishing, and fake customer support interactions are increasing monthly. Fraudsters now use highly convincing scripts, deepfake audio, and psychological manipulation to trick victims into authorising transactions.
2. Account Takeover (ATO) Attacks
Criminals use malware, spoofed apps, and fake KYC verification calls to steal login credentials and OTPs — allowing them to drain accounts quickly.
3. Mule Networks
Fraud rings recruit students, gig workers, and unemployed individuals to move stolen funds. These mule chains operate across multiple banks and e-wallets.
4. Rapid Remittance & Real-Time Payment Rails
Money travels instantly, leaving little room for slow manual intervention.
5. Fragmented Data Across Products
Customers transact across cards, wallets, online banking, kiosks, and over-the-counter channels — making detection harder without unified intelligence.
6. Fraud-as-a-Service
Toolkits, fake identity services, and scripted scam campaigns are now sold online, enabling low-skill criminals to execute sophisticated attacks.
The result:
Fraud is growing not only in volume but in speed, subtlety, and organisation.
What Are Transaction Fraud Prevention Solutions?
Transaction fraud prevention solutions are advanced systems designed to monitor, detect, and block fraudulent behaviour across financial transactions in real time.
They go far beyond simple rules.
They evaluate context, behaviour, relationships, and anomalies across millions of data points — instantly.
Core functions include:
- Analysing transaction patterns
- Identifying anomalies in behaviour
- Scoring fraud risk in real time
- Detecting suspicious devices or locations
- Recognising mule networks
- Applying adaptive risk-based decisioning
- Blocking or challenging high-risk activity
In short, they deliver real-time, intelligence-led protection.
Why Traditional Fraud Systems Fall Short
Legacy systems were built for a world where fraud was slower, simpler, and easier to predict.
Today’s fraud landscape breaks every assumption those systems rely on.
1. Static Rules = Easy to Outsmart
Fraud rings test, iterate, and bypass fixed rules in minutes.
2. High False Positives
Static thresholds trigger unnecessary alerts, causing:
- customer friction
- poor user experience
- operational overload
3. No Visibility Across Channels
Fraud behaviour spans:
- wallets
- online banking
- cards
- QR payments
- remittances
Traditional systems cannot correlate activity across these channels.
4. Siloed Fraud & AML Data
Fraud teams and AML teams often use separate systems — creating blind spots where criminals exploit gaps.
5. No Early Detection of Mule Activity
Legacy systems cannot detect coordinated behaviour across multiple accounts.
6. Lack of Real-Time Insight
Many older systems work on batch analysis — far too slow for instant-payment ecosystems.
Modern fraud requires modern defence — adaptive, connected, and intelligent.
Key Capabilities of Modern Transaction Fraud Prevention Solutions
Today’s best systems combine advanced analytics, behavioural intelligence, and machine learning to deliver real-time actionable insight.
1. Behaviour-Based Transaction Profiling
Instead of relying solely on static rules, modern systems learn how each customer normally behaves:
- typical spend amounts
- usual device & location
- transaction frequency
- preferred channels
- behavioural rhythms
Any meaningful deviation triggers risk scoring.
This approach catches unknown fraud patterns better than rules alone.
2. Machine Learning Models for Real-Time Decisions
ML models analyse:
- thousands of attributes per transaction
- subtle behavioural shifts
- unusual destinations
- time-of-day anomalies
- inconsistent device fingerprints
They detect anomalies invisible to human-designed rules, ensuring earlier and more precise fraud detection.
3. Network Intelligence & Mule Detection
Fraud is rarely isolated — it operates in clusters.
Network analytics identify:
- suspicious account linkages
- common devices
- shared IPs
- repeated counterparties
- transactional “hops”
This reveals mule networks and organised fraud rings early.
4. Device & Location Intelligence
Modern solutions analyse:
- device reputation
- location anomalies
- VPN or emulator usage
- SIM swaps
- multiple accounts using the same device
ATO attacks become far easier to detect.
5. Adaptive Risk Scoring
Every transaction gets a dynamic score that responds to:
- recent customer behaviour
- peer patterns
- new typologies
- velocity patterns
Adaptive scoring is more accurate than static rules — especially in fast-moving ecosystems.
6. Instant Decisioning Engines
Fraud decisions must occur within milliseconds.
AI-driven decision engines:
- approve
- challenge
- decline
- hold
- request additional verification
This real-time speed is essential for protecting customer funds.
7. Cross-Channel Fraud Correlation
Modern solutions connect data across:
- cards
- wallets
- online banking
- QR scans
- ATM usage
- remittances
Fraud rarely travels in a straight line. The system must follow it across channels.

How Tookitaki Approaches Transaction Fraud Prevention
While Tookitaki is widely recognised as a leader in AML and collaborative intelligence, it also brings advanced fraud detection capabilities that strengthen transaction-level protection.
Tookitaki’s fraud prevention strengths include:
- AI-powered fraud detection using behavioural analysis
- Mule detection through network intelligence
- Integration of AML and fraud red flags for unified risk visibility
- Real-time transaction scoring
- Case analysis summarised by FinMate, Tookitaki’s Agentic AI copilot
- Continuous typology updates inspired by global and regional intelligence
How This Helps Institutions
- Faster identification of fraud clusters
- Reduced customer friction through more accurate alerts
- Improved ability to detect scams like ATO and cash-out rings
- Stronger alignment with regulator expectations for fraud risk programmes
While Tookitaki’s core value is collective intelligence + AI, the same capabilities naturally strengthen fraud prevention — making Tookitaki a partner in both AML and fraud risk.
Case Example: Fraud Prevention in a High-Volume Digital Ecosystem
A major digital wallet provider in Southeast Asia faced:
- increasing ATO attempts
- mule account infiltration
- high refund fraud
- social engineering scams
- transaction velocity abuse
Using AI-powered transaction fraud prevention models, the institution achieved:
✔ Early detection of mule accounts
Behavioural and network analytics identified abnormal cash-flow patterns and shared device fingerprints.
✔ Significant reduction in fraud losses
Real-time scoring enabled faster blocking decisions.
✔ Lower false positives
Adaptive models reduced friction for legitimate users.
✔ Faster investigations
FinMate summarised case details, identified patterns, and supported fraud teams in minutes.
✔ Improved customer trust
Users experienced fewer account takeovers and fraudulent deductions.
While anonymised, this case reflects real trends across Philippine and ASEAN digital ecosystems — where institutions handling millions of daily transactions need intelligence that learns as fast as fraud evolves.
The AFC Ecosystem Advantage for Fraud Prevention
Even though the AFC Ecosystem was built to strengthen AML collaboration, its typologies and red-flag intelligence also enhance fraud detection strategies.
Fraud teams benefit from:
- red flags associated with mule recruitment
- cross-border scam patterns
- insights from fraud events in neighbouring countries
- scenario-driven learning
- early warning indicators posted by industry experts
This intelligence empowers financial institutions to anticipate fraud methods before they hit their own platforms.
Federated Intelligence = Stronger Fraud Prevention
Because federated learning allows pattern sharing without exposing customer data, institutions gain collective defence capabilities that fraudsters cannot easily circumvent.
Benefits of Using Modern Transaction Fraud Prevention Solutions
1. Dramatically Reduced Fraud Losses
Real-time blocking prevents financial damage before it occurs.
2. Faster Decisioning
Transactions are analysed and acted upon in milliseconds.
3. Improved Customer Experience
Fewer false positives = less friction.
4. Early Mule Detection
Network analytics identify suspicious clusters long before they mature.
5. Scalable Protection
Cloud-native systems scale effortlessly with transaction volume.
6. Lower Operational Costs
AI reduces manual review workload significantly.
7. Strengthened Regulatory Alignment
Regulators expect robust fraud risk frameworks — intelligent systems help meet these requirements.
8. Better Fraud–AML Collaboration
Unified intelligence across both domains improves accuracy and governance.
The Future of Transaction Fraud Prevention
The next era of fraud prevention will be defined by:
1. Predictive Intelligence
Systems that detect the precursors of fraud, not just the symptoms.
2. Agentic AI Copilots
AI assistants that support fraud analysts by:
- writing case summaries
- highlighting inconsistencies
- answering natural-language questions
3. Unified Fraud + AML Platforms
The convergence has already begun — fraud visibility improves AML, and AML insights improve fraud prevention.
4. Dynamic Identity Risk Scoring
Risk scoring that evolves continuously based on behavioural patterns.
5. Biometric & Behavioural Biometrics Integration
Keystroke patterns, finger pressure, navigation paths — all used to detect compromised profiles.
6. Real-Time Regulatory Insight Sharing
Future frameworks in APAC and the Philippines may support shared threat visibility across institutions.
Institutions that adopt AI-powered fraud prevention today will lead the region tomorrow.
Conclusion
Fraud is no longer a sporadic threat — it is a continuous, evolving challenge that demands real-time, intelligence-driven defence.
Transaction fraud prevention solutions give financial institutions the tools to:
- detect emerging threats
- block fraud instantly
- reduce false positives
- protect customer trust
- scale operations safely
Backed by AI, behavioural analytics, federated intelligence, and Tookitaki’s FinMate investigation copilot, modern fraud prevention systems empower institutions to stay ahead of sophisticated adversaries.
In a financial world moving at digital speed, the institutions that win will be those that invest in smarter, faster, more adaptive fraud prevention solutions.

Anti Money Laundering Solutions: Building a Stronger Financial Defence for Malaysia
As financial crime becomes more complex, anti money laundering solutions are evolving into intelligent systems that protect Malaysia’s financial ecosystem in real time.
Malaysia’s Financial Crime Threat Is Growing in Scale and Sophistication
Malaysia’s financial landscape has transformed dramatically over the past five years. With the rapid rise of digital payments, online investment platforms, fintech remittances, QR codes, and mobile banking, financial institutions process more transactions than ever before.
But with greater scale comes greater vulnerability. Criminal syndicates are exploiting digital convenience to execute laundering schemes that spread across borders, platforms, and payment rails. Scam proceeds move through mule accounts. Instant payments allow layering to happen in minutes. Complex transactions flow through digital wallets and fintech rails that did not exist a decade ago.
The threats Malaysia faces today include:
- Cyber-enabled fraud linked to laundering networks
- Cross-border mule farming
- Layered remittances routed through high-risk corridors
- Illegal online gambling operations
- Account takeover attacks that convert into AML events
- Rapid pass-through transactions designed to avoid detection
- Shell corporations used for trade-based laundering
Bank Negara Malaysia (BNM) and global standards bodies such as FATF are urging institutions to shift from traditional manual monitoring to intelligent anti money laundering solutions capable of detecting, explaining, and preventing risk at scale.
Anti money laundering solutions have become the backbone of financial trust.

What Are Anti Money Laundering Solutions?
Anti money laundering solutions are technology platforms designed to detect and prevent illicit financial activity. They do this by analysing transactions, customer behaviour, device signals, and relationship data to identify suspicious patterns.
These solutions support financial institutions by enabling:
- Transaction monitoring
- Pattern recognition
- Behavioural analytics
- Entity resolution
- Sanctions and PEP screening
- Fraud and AML convergence
- Alert management and investigation
- Suspicious transaction reporting
The most advanced solutions use artificial intelligence to identify unusual behaviour that manual systems would never notice.
Modern AML solutions are not just detection engines. They are intelligent decision-making systems that empower institutions to stay ahead of evolving crime.
Why Malaysia Needs Advanced Anti Money Laundering Solutions
Malaysia sits at the centre of a rapidly growing digital economy. With increased digital adoption comes increased exposure to financial crime.
Here are the key forces driving the demand for sophisticated AML solutions:
1. Instant Transfers Require Real-Time Detection
Criminals take advantage of DuitNow and instant online transfers to move illicit funds before investigators can intervene. This requires detection that reacts in seconds.
2. Growth of QR and Wallet Ecosystems
Wallet-to-wallet transfers, merchant QR payments, and virtual accounts introduce new laundering patterns that legacy systems cannot detect.
3. Cross-Border Crime Across ASEAN
Malaysia shares payment corridors with Singapore, Thailand, Indonesia, and the Philippines. Money laundering schemes now operate as regional networks, not isolated incidents.
4. Hybrid Fraud and AML Typologies
Many AML events begin as fraud. For example:
- ATO fraud becomes mule-driven laundering
- Romance scams evolve into cross-border layering
- Investment scams feed high-value mule accounts
Anti money laundering solutions must understand fraud and AML together.
5. Rising Regulatory Expectations
BNM emphasises:
- Risk based detection
- Explainable decision-making
- Effective case investigation
- Regional intelligence integration
- Real-time data analysis
This requires solutions that offer clarity, transparency, and consistent outcomes.
How Anti Money Laundering Solutions Work
AML solutions follow a multi-layered process that transforms raw data into actionable intelligence.
1. Data Integration
The system consolidates data from:
- Core banking
- Mobile apps
- Digital channels
- Payments and remittance systems
- Screening sources
- Customer onboarding information
2. Behavioural Modelling
The system learns what normal behaviour looks like for each customer segment and for each product type.
3. Anomaly Detection
Machine learning models flag activities that deviate from expected behaviour, such as:
- Spikes in transaction frequency
- Transfers inconsistent with customer profiles
- Round tripping
- Velocity patterns that resemble mule activity
4. Risk Scoring
Each activity receives a dynamic score based on hundreds of indicators.
5. Alert Generation and Narration
When risk exceeds the threshold, an alert is generated. Modern systems explain why the event is suspicious with a clear narrative.
6. Case Management and Reporting
Investigators review evidence in a unified dashboard. Confirmed cases generate STRs for regulatory submission.
7. Continuous Learning
Machine learning models improve with every investigation, reducing false positives and increasing detection accuracy over time.
This continuous improvement is why AI-powered AML solutions outperform legacy systems.
Limitations of Traditional AML Systems
Many Malaysian institutions still rely on older AML tools that struggle to keep pace with today’s crime.
Common limitations include:
- Excessive false positives
- Rules that miss new typologies
- Slow investigations
- No real-time detection
- Siloed fraud and AML monitoring
- Minimal support for regional intelligence
- Weak documentation for STR preparation
Criminal networks are dynamic. Legacy systems are not.
Anti money laundering solutions must evolve to meet the sophistication of modern crime.
The Rise of AI-Powered Anti Money Laundering Solutions
Artificial intelligence is now the defining factor in modern AML effectiveness.
Here is what AI adds to AML:
1. Adaptive Learning
Models update continuously based on investigator feedback and emerging patterns.
2. Unsupervised Anomaly Detection
The system identifies risks it has never seen before.
3. Contextual Intelligence
AI understands relationships between customers, devices, merchants, and transactions.
4. Predictive Risk Scoring
AI predicts which accounts may be involved in future suspicious activity.
5. Automated Investigation Workflows
This reduces manual tasks and speeds up resolution.
6. Explainable AI
Every decision is supported by clear reasoning that auditors and regulators can understand.
AI does not replace investigators. It amplifies them.

Tookitaki’s FinCense: Malaysia’s Leading Anti Money Laundering Solution
Among the advanced AML solutions available in the market, Tookitaki’s FinCense stands out as a transformative platform engineered for accuracy, transparency, and regional relevance.
FinCense is the trust layer for financial crime prevention. It brings together advanced intelligence and collaborative learning to create a unified, end-to-end AML and fraud defence system.
FinCense is built on four breakthrough capabilities.
1. Agentic AI for Smarter Investigations
FinCense uses intelligent AI agents that automatically:
- Triage alerts
- Prioritise high-risk cases
- Generate investigation summaries
- Provide recommended next actions
- Summarise evidence for regulatory reporting
This reduces investigation time significantly and ensures consistency across decision-making.
2. Federated Learning Through the AFC Ecosystem
FinCense connects with the Anti-Financial Crime (AFC) Ecosystem, a network of over 200 institutions across ASEAN. This enables FinCense to learn from emerging typologies in neighbouring markets without sharing confidential data.
Malaysia benefits from early visibility into:
- New investment scam patterns
- Mule recruitment strategies
- Cross-border layering
- QR laundering techniques
- Shell company misuse
This regional intelligence is unmatched by standalone AML systems.
3. Explainable AI that Regulators Trust
FinCense provides full transparency for every alert. Investigators and regulators can see exactly why the system flagged a transaction, including:
- Behavioural deviations
- Risk factors
- Typology matches
- Cross-market insights
This avoids ambiguity and supports strong audit outcomes.
4. Unified Fraud and AML Detection
FinCense integrates fraud detection and AML monitoring into one platform. This eliminates blind spots and captures full criminal flows. For example:
- ATO fraud transitioning into laundering
- Mule activity linked to scam proceeds
- Synthetic identities used for fraud and AML
This holistic view strengthens institutional defence.
Scenario Example: Detecting Multi Layered Laundering in Real Time
Consider a case where a Malaysian fintech notices unusual activity in several new accounts.
The patterns appear harmless in isolation. Small deposits. Low value transfers. Rapid withdrawals. But taken together, they form a mule network.
This is how FinCense detects it:
- Machine learning models identify abnormal transaction velocity.
- Behavioural profiling flags mismatches with expected customer income patterns.
- Federated learning highlights similarities to mule patterns seen recently in Singapore and Indonesia.
- Agentic AI produces an investigation summary explaining risk factors, connections, and recommended actions.
- The system blocks outgoing transfers before laundering is complete.
This kind of detection is impossible for rule based systems.
Benefits of Anti Money Laundering Solutions for Malaysian Institutions
Advanced AML solutions offer significant advantages:
- Lower false positives
- Higher detection accuracy
- Faster investigation cycles
- Stronger regulatory alignment
- Better STR quality
- Improved customer experience
- Lower operational costs
- Early detection of regional threats
AML becomes a competitive advantage, not a compliance burden.
What Financial Institutions Should Look for in AML Solutions
When selecting an AML solution, institutions should prioritise:
Intelligence
AI driven detection that adapts to new risks.
Explainability
Clear reasoning behind each alert.
Speed
Real-time monitoring and instant anomaly detection.
Unified Risk View
Combined fraud and AML intelligence.
Regional Relevance
Coverage of ASEAN specific typologies.
Scalability
Ability to support rising transaction volumes.
Collaborative Intelligence
Access to shared regional insights.
Tookitaki’s FinCense delivers all of these capabilities in one unified platform.
The Future of Anti Money Laundering in Malaysia
Malaysia is moving toward a smarter, more connected AML ecosystem. The future will include:
- Responsible AI and transparent detection
- More sharing of cross border intelligence
- Unified fraud and AML platforms
- Real-time protections for instant payments
- AI powered copilot support for investigators
- Stronger ecosystem collaboration between banks, fintechs, and regulators
Malaysia is well positioned to lead the region in next generation AML.
Conclusion
Anti money laundering solutions are no longer optional. They are essential infrastructure for financial stability and consumer trust. As Malaysia continues to innovate, institutions must defend themselves with systems that learn, explain, and adapt.
Tookitaki’s FinCense is the leading anti money laundering solution for Malaysia. With Agentic AI, federated learning, explainable intelligence, and deep regional relevance, it empowers institutions to detect, prevent, and stay ahead of sophisticated financial crime.
FinCense gives Malaysian institutions not just compliance, but confidence.

Fighting Fraud in the Lion City: How Smart Financial Fraud Solutions Are Raising the Bar
Singapore's financial sector is evolving — and so are the fraudsters.
From digital payment scams to cross-border laundering rings, financial institutions in the region are under siege. But with the right tools and frameworks, banks and fintechs in Singapore can stay ahead of bad actors. In this blog, we break down the most effective financial fraud solutions reshaping the compliance and risk landscape in Singapore.

Understanding the Modern Fraud Landscape
Fraud in Singapore is no longer limited to isolated phishing scams or internal embezzlement. Today’s threats are:
- Cross-border in nature: Syndicates exploit multi-country remittance and shell companies
- Tech-savvy: Deepfake videos, synthetic identities, and real-time manipulation of payment flows are on the rise
- Faster than ever: Real-time payments mean real-time fraud
As fraud becomes more complex and automated, institutions need smarter, faster, and more collaborative solutions to detect and prevent it.
Core Components of a Financial Fraud Solution
A strong anti-fraud strategy in Singapore should include the following components:
1. Real-Time Transaction Monitoring
Monitor transactions as they occur to detect anomalies and suspicious patterns before funds leave the system.
2. Identity Verification and Biometrics
Ensure customers are who they say they are using biometric data, two-factor authentication, and device fingerprinting.
3. Behavioural Analytics
Understand the normal patterns of each user and flag deviations — such as unusual login times or changes in transaction frequency.
4. AI and Machine Learning Models
Use historical and real-time data to train models that predict potential fraud with higher accuracy.
5. Centralised Case Management
Link alerts from different systems, assign investigators, and track actions for a complete audit trail.
6. External Intelligence Feeds
Integrate with fraud typology databases, sanctions lists, and community-driven intelligence like the AFC Ecosystem.

Unique Challenges in Singapore’s Financial Ecosystem
Despite being a tech-forward nation, Singapore faces:
- High cross-border transaction volume
- Instant payment adoption (e.g., PayNow and FAST)
- E-wallet and fintech proliferation
- A diverse customer base, including foreign workers, tourists, and remote businesses
All of these factors introduce fraud risks that generic solutions often fail to capture.
Real-World Case: Pig Butchering Scam in Singapore
A recent case involved scammers posing as investment coaches to defraud victims of over SGD 10 million.
Using fake trading platforms and emotional manipulation, they tricked users into making repeated transfers to offshore accounts.
A financial institution using basic rule-based systems missed the scam. But a Tookitaki-powered platform could’ve caught:
- Irregular transaction spikes
- High-frequency transfers to unknown beneficiaries
- Sudden changes in customer device and location data
How Tookitaki Helps: FinCense in Action
Tookitaki’s FinCense platform powers end-to-end fraud detection and prevention, tailored to the needs of Singaporean FIs.
Key Differentiators:
- Agentic AI Approach: Empowers fraud teams with a proactive investigation copilot (FinMate)
- Federated Typology Sharing: Access community-contributed fraud scenarios, including local Singapore-specific cases
- Dynamic Risk Scoring: Goes beyond static thresholds and adjusts based on real-time data and emerging patterns
- Unified Risk View: Consolidates AML and fraud alerts across products for a 360° risk profile
Results Delivered:
- Up to 72% false positive reduction
- 3.5x faster alert resolution
- Improved MAS STR filing accuracy and timeliness
What to Look for in a Financial Fraud Solution
When evaluating financial fraud solutions, it’s essential to look for a few non-negotiable capabilities. Real-time monitoring is critical because fraudsters act within seconds — systems must detect and respond just as quickly. Adaptive AI models are equally important, enabling continuous learning from new threats and behaviours. Integration between fraud detection and AML systems allows for better coverage of overlapping risks and more streamlined investigations. Visualisation tools that use graphs and timelines help investigators uncover fraud networks faster than relying solely on static logs. Lastly, any solution must ensure alignment with MAS regulations and auditability, particularly for institutions operating in the Singaporean financial ecosystem.
Emerging Trends to Watch
1. Deepfake-Fuelled Scams
From impersonating CFOs to launching fake voice calls, deepfake fraud is here. Detection systems must analyse not just content but behaviour and metadata.
2. Synthetic Identity Fraud
As banks adopt digital onboarding, fraudsters use realistic fake profiles. Tools must verify across databases, behaviour, and device use.
3. Cross-Platform Laundering
With scams often crossing from bank to fintech to crypto, fraud systems must work across multiple payment channels.
Future-Proofing Your Institution
Financial institutions in Singapore must evolve fraud defence strategies by:
- Investing in smarter, AI-led solutions
- Participating in collective intelligence networks
- Aligning detection with MAS guidelines
- Training staff to work with AI-powered systems
Compliance teams can no longer fight tomorrow’s fraud with yesterday’s tools.
Conclusion: A New Era of Fraud Defence
As fraudsters become more organised, so must the defenders. Singapore’s fight against financial crime requires tools that combine speed, intelligence, collaboration, and local awareness.
Solutions like Tookitaki’s FinCense are proving that smarter fraud detection isn’t just possible — it’s already happening. The future of financial fraud defence lies in integrated platforms that combine data, AI, and human insight.

Stopping Fraud in Its Tracks: The Rise of Intelligent Transaction Fraud Prevention Solutions
Fraud today moves faster than ever — your defences should too.
Introduction
Fraud has evolved into one of the fastest-moving threats in the financial ecosystem. Every second, millions of digital transactions move across payment rails — from e-wallet transfers and QR code payments to online banking and card purchases. In the Philippines, where digital adoption is soaring and consumers rely heavily on mobile-first financial services, fraudsters are exploiting every weak point in the system.
The challenge?
Traditional fraud detection tools were never designed for this world.
They depend on static rules, slow batch processes, and outdated logic. Fraudsters, meanwhile, use automation, spoofed identities, social engineering, and well-coordinated mule networks to slip through the cracks.
This is why transaction fraud prevention solutions have become mission-critical. They combine behavioural intelligence, machine learning, network analytics, and real-time decision engines to identify and stop fraud before the money moves — not after.
The financial institutions that invest in these next-generation systems aren’t just preventing losses; they are building trust, improving customer experience, and strengthening long-term resilience.

Why Transaction Fraud Is Increasing in the Philippines
The Philippines is one of Southeast Asia’s most digitally active markets, with millions of users relying on online wallets, mobile banking, and instant payments. This growth, while positive, has also created an ideal environment for fraud.
1. Rise of Social Engineering Scams
Investment scams, “love scams,” phishing, and fake customer support interactions are increasing monthly. Fraudsters now use highly convincing scripts, deepfake audio, and psychological manipulation to trick victims into authorising transactions.
2. Account Takeover (ATO) Attacks
Criminals use malware, spoofed apps, and fake KYC verification calls to steal login credentials and OTPs — allowing them to drain accounts quickly.
3. Mule Networks
Fraud rings recruit students, gig workers, and unemployed individuals to move stolen funds. These mule chains operate across multiple banks and e-wallets.
4. Rapid Remittance & Real-Time Payment Rails
Money travels instantly, leaving little room for slow manual intervention.
5. Fragmented Data Across Products
Customers transact across cards, wallets, online banking, kiosks, and over-the-counter channels — making detection harder without unified intelligence.
6. Fraud-as-a-Service
Toolkits, fake identity services, and scripted scam campaigns are now sold online, enabling low-skill criminals to execute sophisticated attacks.
The result:
Fraud is growing not only in volume but in speed, subtlety, and organisation.
What Are Transaction Fraud Prevention Solutions?
Transaction fraud prevention solutions are advanced systems designed to monitor, detect, and block fraudulent behaviour across financial transactions in real time.
They go far beyond simple rules.
They evaluate context, behaviour, relationships, and anomalies across millions of data points — instantly.
Core functions include:
- Analysing transaction patterns
- Identifying anomalies in behaviour
- Scoring fraud risk in real time
- Detecting suspicious devices or locations
- Recognising mule networks
- Applying adaptive risk-based decisioning
- Blocking or challenging high-risk activity
In short, they deliver real-time, intelligence-led protection.
Why Traditional Fraud Systems Fall Short
Legacy systems were built for a world where fraud was slower, simpler, and easier to predict.
Today’s fraud landscape breaks every assumption those systems rely on.
1. Static Rules = Easy to Outsmart
Fraud rings test, iterate, and bypass fixed rules in minutes.
2. High False Positives
Static thresholds trigger unnecessary alerts, causing:
- customer friction
- poor user experience
- operational overload
3. No Visibility Across Channels
Fraud behaviour spans:
- wallets
- online banking
- cards
- QR payments
- remittances
Traditional systems cannot correlate activity across these channels.
4. Siloed Fraud & AML Data
Fraud teams and AML teams often use separate systems — creating blind spots where criminals exploit gaps.
5. No Early Detection of Mule Activity
Legacy systems cannot detect coordinated behaviour across multiple accounts.
6. Lack of Real-Time Insight
Many older systems work on batch analysis — far too slow for instant-payment ecosystems.
Modern fraud requires modern defence — adaptive, connected, and intelligent.
Key Capabilities of Modern Transaction Fraud Prevention Solutions
Today’s best systems combine advanced analytics, behavioural intelligence, and machine learning to deliver real-time actionable insight.
1. Behaviour-Based Transaction Profiling
Instead of relying solely on static rules, modern systems learn how each customer normally behaves:
- typical spend amounts
- usual device & location
- transaction frequency
- preferred channels
- behavioural rhythms
Any meaningful deviation triggers risk scoring.
This approach catches unknown fraud patterns better than rules alone.
2. Machine Learning Models for Real-Time Decisions
ML models analyse:
- thousands of attributes per transaction
- subtle behavioural shifts
- unusual destinations
- time-of-day anomalies
- inconsistent device fingerprints
They detect anomalies invisible to human-designed rules, ensuring earlier and more precise fraud detection.
3. Network Intelligence & Mule Detection
Fraud is rarely isolated — it operates in clusters.
Network analytics identify:
- suspicious account linkages
- common devices
- shared IPs
- repeated counterparties
- transactional “hops”
This reveals mule networks and organised fraud rings early.
4. Device & Location Intelligence
Modern solutions analyse:
- device reputation
- location anomalies
- VPN or emulator usage
- SIM swaps
- multiple accounts using the same device
ATO attacks become far easier to detect.
5. Adaptive Risk Scoring
Every transaction gets a dynamic score that responds to:
- recent customer behaviour
- peer patterns
- new typologies
- velocity patterns
Adaptive scoring is more accurate than static rules — especially in fast-moving ecosystems.
6. Instant Decisioning Engines
Fraud decisions must occur within milliseconds.
AI-driven decision engines:
- approve
- challenge
- decline
- hold
- request additional verification
This real-time speed is essential for protecting customer funds.
7. Cross-Channel Fraud Correlation
Modern solutions connect data across:
- cards
- wallets
- online banking
- QR scans
- ATM usage
- remittances
Fraud rarely travels in a straight line. The system must follow it across channels.

How Tookitaki Approaches Transaction Fraud Prevention
While Tookitaki is widely recognised as a leader in AML and collaborative intelligence, it also brings advanced fraud detection capabilities that strengthen transaction-level protection.
Tookitaki’s fraud prevention strengths include:
- AI-powered fraud detection using behavioural analysis
- Mule detection through network intelligence
- Integration of AML and fraud red flags for unified risk visibility
- Real-time transaction scoring
- Case analysis summarised by FinMate, Tookitaki’s Agentic AI copilot
- Continuous typology updates inspired by global and regional intelligence
How This Helps Institutions
- Faster identification of fraud clusters
- Reduced customer friction through more accurate alerts
- Improved ability to detect scams like ATO and cash-out rings
- Stronger alignment with regulator expectations for fraud risk programmes
While Tookitaki’s core value is collective intelligence + AI, the same capabilities naturally strengthen fraud prevention — making Tookitaki a partner in both AML and fraud risk.
Case Example: Fraud Prevention in a High-Volume Digital Ecosystem
A major digital wallet provider in Southeast Asia faced:
- increasing ATO attempts
- mule account infiltration
- high refund fraud
- social engineering scams
- transaction velocity abuse
Using AI-powered transaction fraud prevention models, the institution achieved:
✔ Early detection of mule accounts
Behavioural and network analytics identified abnormal cash-flow patterns and shared device fingerprints.
✔ Significant reduction in fraud losses
Real-time scoring enabled faster blocking decisions.
✔ Lower false positives
Adaptive models reduced friction for legitimate users.
✔ Faster investigations
FinMate summarised case details, identified patterns, and supported fraud teams in minutes.
✔ Improved customer trust
Users experienced fewer account takeovers and fraudulent deductions.
While anonymised, this case reflects real trends across Philippine and ASEAN digital ecosystems — where institutions handling millions of daily transactions need intelligence that learns as fast as fraud evolves.
The AFC Ecosystem Advantage for Fraud Prevention
Even though the AFC Ecosystem was built to strengthen AML collaboration, its typologies and red-flag intelligence also enhance fraud detection strategies.
Fraud teams benefit from:
- red flags associated with mule recruitment
- cross-border scam patterns
- insights from fraud events in neighbouring countries
- scenario-driven learning
- early warning indicators posted by industry experts
This intelligence empowers financial institutions to anticipate fraud methods before they hit their own platforms.
Federated Intelligence = Stronger Fraud Prevention
Because federated learning allows pattern sharing without exposing customer data, institutions gain collective defence capabilities that fraudsters cannot easily circumvent.
Benefits of Using Modern Transaction Fraud Prevention Solutions
1. Dramatically Reduced Fraud Losses
Real-time blocking prevents financial damage before it occurs.
2. Faster Decisioning
Transactions are analysed and acted upon in milliseconds.
3. Improved Customer Experience
Fewer false positives = less friction.
4. Early Mule Detection
Network analytics identify suspicious clusters long before they mature.
5. Scalable Protection
Cloud-native systems scale effortlessly with transaction volume.
6. Lower Operational Costs
AI reduces manual review workload significantly.
7. Strengthened Regulatory Alignment
Regulators expect robust fraud risk frameworks — intelligent systems help meet these requirements.
8. Better Fraud–AML Collaboration
Unified intelligence across both domains improves accuracy and governance.
The Future of Transaction Fraud Prevention
The next era of fraud prevention will be defined by:
1. Predictive Intelligence
Systems that detect the precursors of fraud, not just the symptoms.
2. Agentic AI Copilots
AI assistants that support fraud analysts by:
- writing case summaries
- highlighting inconsistencies
- answering natural-language questions
3. Unified Fraud + AML Platforms
The convergence has already begun — fraud visibility improves AML, and AML insights improve fraud prevention.
4. Dynamic Identity Risk Scoring
Risk scoring that evolves continuously based on behavioural patterns.
5. Biometric & Behavioural Biometrics Integration
Keystroke patterns, finger pressure, navigation paths — all used to detect compromised profiles.
6. Real-Time Regulatory Insight Sharing
Future frameworks in APAC and the Philippines may support shared threat visibility across institutions.
Institutions that adopt AI-powered fraud prevention today will lead the region tomorrow.
Conclusion
Fraud is no longer a sporadic threat — it is a continuous, evolving challenge that demands real-time, intelligence-driven defence.
Transaction fraud prevention solutions give financial institutions the tools to:
- detect emerging threats
- block fraud instantly
- reduce false positives
- protect customer trust
- scale operations safely
Backed by AI, behavioural analytics, federated intelligence, and Tookitaki’s FinMate investigation copilot, modern fraud prevention systems empower institutions to stay ahead of sophisticated adversaries.
In a financial world moving at digital speed, the institutions that win will be those that invest in smarter, faster, more adaptive fraud prevention solutions.

Anti Money Laundering Solutions: Building a Stronger Financial Defence for Malaysia
As financial crime becomes more complex, anti money laundering solutions are evolving into intelligent systems that protect Malaysia’s financial ecosystem in real time.
Malaysia’s Financial Crime Threat Is Growing in Scale and Sophistication
Malaysia’s financial landscape has transformed dramatically over the past five years. With the rapid rise of digital payments, online investment platforms, fintech remittances, QR codes, and mobile banking, financial institutions process more transactions than ever before.
But with greater scale comes greater vulnerability. Criminal syndicates are exploiting digital convenience to execute laundering schemes that spread across borders, platforms, and payment rails. Scam proceeds move through mule accounts. Instant payments allow layering to happen in minutes. Complex transactions flow through digital wallets and fintech rails that did not exist a decade ago.
The threats Malaysia faces today include:
- Cyber-enabled fraud linked to laundering networks
- Cross-border mule farming
- Layered remittances routed through high-risk corridors
- Illegal online gambling operations
- Account takeover attacks that convert into AML events
- Rapid pass-through transactions designed to avoid detection
- Shell corporations used for trade-based laundering
Bank Negara Malaysia (BNM) and global standards bodies such as FATF are urging institutions to shift from traditional manual monitoring to intelligent anti money laundering solutions capable of detecting, explaining, and preventing risk at scale.
Anti money laundering solutions have become the backbone of financial trust.

What Are Anti Money Laundering Solutions?
Anti money laundering solutions are technology platforms designed to detect and prevent illicit financial activity. They do this by analysing transactions, customer behaviour, device signals, and relationship data to identify suspicious patterns.
These solutions support financial institutions by enabling:
- Transaction monitoring
- Pattern recognition
- Behavioural analytics
- Entity resolution
- Sanctions and PEP screening
- Fraud and AML convergence
- Alert management and investigation
- Suspicious transaction reporting
The most advanced solutions use artificial intelligence to identify unusual behaviour that manual systems would never notice.
Modern AML solutions are not just detection engines. They are intelligent decision-making systems that empower institutions to stay ahead of evolving crime.
Why Malaysia Needs Advanced Anti Money Laundering Solutions
Malaysia sits at the centre of a rapidly growing digital economy. With increased digital adoption comes increased exposure to financial crime.
Here are the key forces driving the demand for sophisticated AML solutions:
1. Instant Transfers Require Real-Time Detection
Criminals take advantage of DuitNow and instant online transfers to move illicit funds before investigators can intervene. This requires detection that reacts in seconds.
2. Growth of QR and Wallet Ecosystems
Wallet-to-wallet transfers, merchant QR payments, and virtual accounts introduce new laundering patterns that legacy systems cannot detect.
3. Cross-Border Crime Across ASEAN
Malaysia shares payment corridors with Singapore, Thailand, Indonesia, and the Philippines. Money laundering schemes now operate as regional networks, not isolated incidents.
4. Hybrid Fraud and AML Typologies
Many AML events begin as fraud. For example:
- ATO fraud becomes mule-driven laundering
- Romance scams evolve into cross-border layering
- Investment scams feed high-value mule accounts
Anti money laundering solutions must understand fraud and AML together.
5. Rising Regulatory Expectations
BNM emphasises:
- Risk based detection
- Explainable decision-making
- Effective case investigation
- Regional intelligence integration
- Real-time data analysis
This requires solutions that offer clarity, transparency, and consistent outcomes.
How Anti Money Laundering Solutions Work
AML solutions follow a multi-layered process that transforms raw data into actionable intelligence.
1. Data Integration
The system consolidates data from:
- Core banking
- Mobile apps
- Digital channels
- Payments and remittance systems
- Screening sources
- Customer onboarding information
2. Behavioural Modelling
The system learns what normal behaviour looks like for each customer segment and for each product type.
3. Anomaly Detection
Machine learning models flag activities that deviate from expected behaviour, such as:
- Spikes in transaction frequency
- Transfers inconsistent with customer profiles
- Round tripping
- Velocity patterns that resemble mule activity
4. Risk Scoring
Each activity receives a dynamic score based on hundreds of indicators.
5. Alert Generation and Narration
When risk exceeds the threshold, an alert is generated. Modern systems explain why the event is suspicious with a clear narrative.
6. Case Management and Reporting
Investigators review evidence in a unified dashboard. Confirmed cases generate STRs for regulatory submission.
7. Continuous Learning
Machine learning models improve with every investigation, reducing false positives and increasing detection accuracy over time.
This continuous improvement is why AI-powered AML solutions outperform legacy systems.
Limitations of Traditional AML Systems
Many Malaysian institutions still rely on older AML tools that struggle to keep pace with today’s crime.
Common limitations include:
- Excessive false positives
- Rules that miss new typologies
- Slow investigations
- No real-time detection
- Siloed fraud and AML monitoring
- Minimal support for regional intelligence
- Weak documentation for STR preparation
Criminal networks are dynamic. Legacy systems are not.
Anti money laundering solutions must evolve to meet the sophistication of modern crime.
The Rise of AI-Powered Anti Money Laundering Solutions
Artificial intelligence is now the defining factor in modern AML effectiveness.
Here is what AI adds to AML:
1. Adaptive Learning
Models update continuously based on investigator feedback and emerging patterns.
2. Unsupervised Anomaly Detection
The system identifies risks it has never seen before.
3. Contextual Intelligence
AI understands relationships between customers, devices, merchants, and transactions.
4. Predictive Risk Scoring
AI predicts which accounts may be involved in future suspicious activity.
5. Automated Investigation Workflows
This reduces manual tasks and speeds up resolution.
6. Explainable AI
Every decision is supported by clear reasoning that auditors and regulators can understand.
AI does not replace investigators. It amplifies them.

Tookitaki’s FinCense: Malaysia’s Leading Anti Money Laundering Solution
Among the advanced AML solutions available in the market, Tookitaki’s FinCense stands out as a transformative platform engineered for accuracy, transparency, and regional relevance.
FinCense is the trust layer for financial crime prevention. It brings together advanced intelligence and collaborative learning to create a unified, end-to-end AML and fraud defence system.
FinCense is built on four breakthrough capabilities.
1. Agentic AI for Smarter Investigations
FinCense uses intelligent AI agents that automatically:
- Triage alerts
- Prioritise high-risk cases
- Generate investigation summaries
- Provide recommended next actions
- Summarise evidence for regulatory reporting
This reduces investigation time significantly and ensures consistency across decision-making.
2. Federated Learning Through the AFC Ecosystem
FinCense connects with the Anti-Financial Crime (AFC) Ecosystem, a network of over 200 institutions across ASEAN. This enables FinCense to learn from emerging typologies in neighbouring markets without sharing confidential data.
Malaysia benefits from early visibility into:
- New investment scam patterns
- Mule recruitment strategies
- Cross-border layering
- QR laundering techniques
- Shell company misuse
This regional intelligence is unmatched by standalone AML systems.
3. Explainable AI that Regulators Trust
FinCense provides full transparency for every alert. Investigators and regulators can see exactly why the system flagged a transaction, including:
- Behavioural deviations
- Risk factors
- Typology matches
- Cross-market insights
This avoids ambiguity and supports strong audit outcomes.
4. Unified Fraud and AML Detection
FinCense integrates fraud detection and AML monitoring into one platform. This eliminates blind spots and captures full criminal flows. For example:
- ATO fraud transitioning into laundering
- Mule activity linked to scam proceeds
- Synthetic identities used for fraud and AML
This holistic view strengthens institutional defence.
Scenario Example: Detecting Multi Layered Laundering in Real Time
Consider a case where a Malaysian fintech notices unusual activity in several new accounts.
The patterns appear harmless in isolation. Small deposits. Low value transfers. Rapid withdrawals. But taken together, they form a mule network.
This is how FinCense detects it:
- Machine learning models identify abnormal transaction velocity.
- Behavioural profiling flags mismatches with expected customer income patterns.
- Federated learning highlights similarities to mule patterns seen recently in Singapore and Indonesia.
- Agentic AI produces an investigation summary explaining risk factors, connections, and recommended actions.
- The system blocks outgoing transfers before laundering is complete.
This kind of detection is impossible for rule based systems.
Benefits of Anti Money Laundering Solutions for Malaysian Institutions
Advanced AML solutions offer significant advantages:
- Lower false positives
- Higher detection accuracy
- Faster investigation cycles
- Stronger regulatory alignment
- Better STR quality
- Improved customer experience
- Lower operational costs
- Early detection of regional threats
AML becomes a competitive advantage, not a compliance burden.
What Financial Institutions Should Look for in AML Solutions
When selecting an AML solution, institutions should prioritise:
Intelligence
AI driven detection that adapts to new risks.
Explainability
Clear reasoning behind each alert.
Speed
Real-time monitoring and instant anomaly detection.
Unified Risk View
Combined fraud and AML intelligence.
Regional Relevance
Coverage of ASEAN specific typologies.
Scalability
Ability to support rising transaction volumes.
Collaborative Intelligence
Access to shared regional insights.
Tookitaki’s FinCense delivers all of these capabilities in one unified platform.
The Future of Anti Money Laundering in Malaysia
Malaysia is moving toward a smarter, more connected AML ecosystem. The future will include:
- Responsible AI and transparent detection
- More sharing of cross border intelligence
- Unified fraud and AML platforms
- Real-time protections for instant payments
- AI powered copilot support for investigators
- Stronger ecosystem collaboration between banks, fintechs, and regulators
Malaysia is well positioned to lead the region in next generation AML.
Conclusion
Anti money laundering solutions are no longer optional. They are essential infrastructure for financial stability and consumer trust. As Malaysia continues to innovate, institutions must defend themselves with systems that learn, explain, and adapt.
Tookitaki’s FinCense is the leading anti money laundering solution for Malaysia. With Agentic AI, federated learning, explainable intelligence, and deep regional relevance, it empowers institutions to detect, prevent, and stay ahead of sophisticated financial crime.
FinCense gives Malaysian institutions not just compliance, but confidence.

Fighting Fraud in the Lion City: How Smart Financial Fraud Solutions Are Raising the Bar
Singapore's financial sector is evolving — and so are the fraudsters.
From digital payment scams to cross-border laundering rings, financial institutions in the region are under siege. But with the right tools and frameworks, banks and fintechs in Singapore can stay ahead of bad actors. In this blog, we break down the most effective financial fraud solutions reshaping the compliance and risk landscape in Singapore.

Understanding the Modern Fraud Landscape
Fraud in Singapore is no longer limited to isolated phishing scams or internal embezzlement. Today’s threats are:
- Cross-border in nature: Syndicates exploit multi-country remittance and shell companies
- Tech-savvy: Deepfake videos, synthetic identities, and real-time manipulation of payment flows are on the rise
- Faster than ever: Real-time payments mean real-time fraud
As fraud becomes more complex and automated, institutions need smarter, faster, and more collaborative solutions to detect and prevent it.
Core Components of a Financial Fraud Solution
A strong anti-fraud strategy in Singapore should include the following components:
1. Real-Time Transaction Monitoring
Monitor transactions as they occur to detect anomalies and suspicious patterns before funds leave the system.
2. Identity Verification and Biometrics
Ensure customers are who they say they are using biometric data, two-factor authentication, and device fingerprinting.
3. Behavioural Analytics
Understand the normal patterns of each user and flag deviations — such as unusual login times or changes in transaction frequency.
4. AI and Machine Learning Models
Use historical and real-time data to train models that predict potential fraud with higher accuracy.
5. Centralised Case Management
Link alerts from different systems, assign investigators, and track actions for a complete audit trail.
6. External Intelligence Feeds
Integrate with fraud typology databases, sanctions lists, and community-driven intelligence like the AFC Ecosystem.

Unique Challenges in Singapore’s Financial Ecosystem
Despite being a tech-forward nation, Singapore faces:
- High cross-border transaction volume
- Instant payment adoption (e.g., PayNow and FAST)
- E-wallet and fintech proliferation
- A diverse customer base, including foreign workers, tourists, and remote businesses
All of these factors introduce fraud risks that generic solutions often fail to capture.
Real-World Case: Pig Butchering Scam in Singapore
A recent case involved scammers posing as investment coaches to defraud victims of over SGD 10 million.
Using fake trading platforms and emotional manipulation, they tricked users into making repeated transfers to offshore accounts.
A financial institution using basic rule-based systems missed the scam. But a Tookitaki-powered platform could’ve caught:
- Irregular transaction spikes
- High-frequency transfers to unknown beneficiaries
- Sudden changes in customer device and location data
How Tookitaki Helps: FinCense in Action
Tookitaki’s FinCense platform powers end-to-end fraud detection and prevention, tailored to the needs of Singaporean FIs.
Key Differentiators:
- Agentic AI Approach: Empowers fraud teams with a proactive investigation copilot (FinMate)
- Federated Typology Sharing: Access community-contributed fraud scenarios, including local Singapore-specific cases
- Dynamic Risk Scoring: Goes beyond static thresholds and adjusts based on real-time data and emerging patterns
- Unified Risk View: Consolidates AML and fraud alerts across products for a 360° risk profile
Results Delivered:
- Up to 72% false positive reduction
- 3.5x faster alert resolution
- Improved MAS STR filing accuracy and timeliness
What to Look for in a Financial Fraud Solution
When evaluating financial fraud solutions, it’s essential to look for a few non-negotiable capabilities. Real-time monitoring is critical because fraudsters act within seconds — systems must detect and respond just as quickly. Adaptive AI models are equally important, enabling continuous learning from new threats and behaviours. Integration between fraud detection and AML systems allows for better coverage of overlapping risks and more streamlined investigations. Visualisation tools that use graphs and timelines help investigators uncover fraud networks faster than relying solely on static logs. Lastly, any solution must ensure alignment with MAS regulations and auditability, particularly for institutions operating in the Singaporean financial ecosystem.
Emerging Trends to Watch
1. Deepfake-Fuelled Scams
From impersonating CFOs to launching fake voice calls, deepfake fraud is here. Detection systems must analyse not just content but behaviour and metadata.
2. Synthetic Identity Fraud
As banks adopt digital onboarding, fraudsters use realistic fake profiles. Tools must verify across databases, behaviour, and device use.
3. Cross-Platform Laundering
With scams often crossing from bank to fintech to crypto, fraud systems must work across multiple payment channels.
Future-Proofing Your Institution
Financial institutions in Singapore must evolve fraud defence strategies by:
- Investing in smarter, AI-led solutions
- Participating in collective intelligence networks
- Aligning detection with MAS guidelines
- Training staff to work with AI-powered systems
Compliance teams can no longer fight tomorrow’s fraud with yesterday’s tools.
Conclusion: A New Era of Fraud Defence
As fraudsters become more organised, so must the defenders. Singapore’s fight against financial crime requires tools that combine speed, intelligence, collaboration, and local awareness.
Solutions like Tookitaki’s FinCense are proving that smarter fraud detection isn’t just possible — it’s already happening. The future of financial fraud defence lies in integrated platforms that combine data, AI, and human insight.


