Blog

The Transformative Role of Generative AI in Financial Crime Compliance

Site Logo
Anup Gunjan
26 September 2024
read
10 min

When we look at the financial crime landscape today, it’s clear that we’re on the brink of a significant evolution. The traditional methods of combating money laundering and fraud, which have relied heavily on rule-based systems and static models, are rapidly being eclipsed by the transformative potential of artificial intelligence (AI) and machine learning (ML). Over the last two decades, these technologies have fundamentally changed how we identify and respond to illicit activities. But as we look into the next few years, a new tech transformation is set to reshape the field: generative AI.

This isn't just another technological upgrade—it’s a paradigm shift. Generative AI is poised to redefine the rules of the game, offering unprecedented capabilities that go beyond the detection and prevention tools we’ve relied on so far. While ML has already improved our ability to spot suspicious patterns, generative AI promises to tackle more sophisticated threats, adapt faster to evolving tactics, and bring a new level of intelligence to financial crime compliance.

But with this promise comes a critical question: How exactly will generative AI or specifically, Large Language Models (LLM) transform financial crime compliance? The answer lies not just in its advanced capabilities but in its potential to alter the way we approach detection and prevention fundamentally. As we prepare for this next wave of innovation, it’s essential to understand the opportunities—and the challenges—that come with it.

Generative AI in Financial crime compliance

When it comes to leveraging LLM in financial crime compliance, the possibilities are profound. Let’s break down some of the key areas where this technology can make a real impact:

  1. Data Generation and Augmentation: LLM has the unique ability to create synthetic data that closely mirrors real-world financial transactions. This isn’t just about filling in gaps; it’s about creating a rich, diverse dataset that can be used to train machine learning models more effectively. This is particularly valuable for fintech startups that may not have extensive historical data to draw from. With generative AI, they can test and deploy robust financial crime solutions while preserving the privacy of sensitive information. It’s like having a virtual data lab that’s always ready for experimentation.
  2. Unsupervised Anomaly Detection: Traditional systems often struggle to catch the nuanced, sophisticated patterns of modern financial crime. Large language models, however, can learn the complex behaviours of legitimate transactions and use this understanding as a baseline. When a new transaction deviates from this learned norm, it raises a red flag. These models can detect subtle irregularities that traditional rule-based systems or simpler machine learning algorithms might overlook, providing a more refined, proactive defence against potential fraud or money laundering.
  3. Automating the Investigation Process: Compliance professionals know the grind of sifting through endless alerts and drafting investigation reports. Generative AI offers a smarter way forward. By automating the creation of summaries, reports, and investigation notes, it frees up valuable time for compliance teams to focus on what really matters: strategic decision-making and complex case analysis. This isn’t just about making things faster—it’s about enabling a deeper, more insightful investigative process.
  4. Scenario Simulation and Risk Assessment: Generative AI can simulate countless financial transaction scenarios, assessing their risk levels based on historical data and regulatory requirements. This capability allows financial institutions to anticipate and prepare for a wide range of potential threats. It’s not just about reacting to crime; it’s about being ready for what comes next, armed with the insights needed to stay one step ahead.

To truly appreciate the transformative power of generative AI, we need to take a closer look at two critical areas: anomaly detection and explainability. These are the foundations upon which the future of financial crime compliance will be built.

Anomaly detection

One of the perennial challenges in fraud detection is the reliance on labelled data, where traditional machine learning models need clear examples of both legitimate and fraudulent transactions to learn from. This can be a significant bottleneck. After all, obtaining such labelled data—especially for emerging or sophisticated fraud schemes—is not only time-consuming but also often incomplete. This is where generative AI steps in, offering a fresh perspective with its capability for unsupervised anomaly detection, bypassing the need for labelled datasets.

To understand how this works, let’s break it down.

Traditional Unsupervised ML Approach

Typically, financial institutions using unsupervised machine learning might deploy clustering algorithms like k-means. Here’s how it works: transactions are grouped into clusters based on various features—transaction amount, time of day, location, and so on. Anomalies are then identified as transactions that don’t fit neatly into any of these clusters or exhibit characteristics that deviate significantly from the norm.

While this method has its merits, it can struggle to keep up with the complexity of modern fraud patterns. What happens when the anomalies are subtle or when legitimate variations are mistakenly flagged? The result is a system that can’t always distinguish between a genuine threat and a benign fluctuation.

Generative AI Approach

Generative AI offers a more nuanced solution. Consider the use of a variational autoencoder (VAE). Instead of relying on predefined labels, a VAE learns the underlying distribution of normal transactions by reconstructing them during training. Think of it as the model teaching itself what “normal” looks like. As it learns, the VAE can even generate synthetic transactions that closely resemble real ones, effectively creating a virtual landscape of typical behavior.

Once trained, this model becomes a powerful tool for anomaly detection. Here’s how: every incoming transaction is reconstructed by the VAE and compared to its original version. Transactions that deviate significantly, exhibiting high reconstruction errors, are flagged as potential anomalies. It’s like having a highly sensitive radar that picks up on the slightest deviations from the expected course. Moreover, by generating synthetic transactions and comparing them to real ones, the model can spot discrepancies that might otherwise go unnoticed.

This isn’t just an incremental improvement—it’s a leap forward. Generative AI’s ability to capture the intricate relationships within transaction data means it can detect anomalies with greater accuracy, reducing false positives and enhancing the overall effectiveness of fraud detection.

Explainability and Automated STR Reporting in Local Languages

One of the most pressing issues in machine learning (ML)-based systems is their often opaque decision-making process. For compliance officers and regulators tasked with understanding why a certain transaction was flagged, this lack of transparency can be a significant hurdle. Enter explainability techniques like LIME and SHAP. These tools are designed to peel back the layers of complex generative AI models, offering insights into how and why specific decisions were made. It’s like shining a light into the black box, providing much-needed clarity in a landscape where every decision could have significant implications.

But explainability is only one piece of the puzzle. Compliance is a global game, played on a field marked by varied and often stringent regulatory requirements. This is where generative AI’s natural language processing (NLP) capabilities come into play, revolutionizing how suspicious transaction reports (STRs) are generated and communicated. Imagine a system that can not only identify suspicious activities but also automatically draft detailed, accurate STRs in multiple languages, tailored to the specific regulatory nuances of each jurisdiction.

This is more than just a time-saver; it’s a transformative tool that ensures compliance officers can operate seamlessly across borders. By automating the generation of STRs in local languages, AI not only speeds up the process but also reduces the risk of miscommunication or regulatory missteps. It’s about making compliance more accessible and more effective, no matter where you are in the world.

{{cta-whitepaper}}

Upcoming Challenges

While the potential of generative AI is undeniably transformative, it’s not without its hurdles. From technical intricacies to regulatory constraints, there are several challenges that must be navigated to fully harness this technology in the fight against financial crime.

LLMs and Long Text Processing

One of the key challenges is ensuring that Generative Language Models (GLMs) like the Large Language Model (LLM) go beyond simple tasks like summarization to demonstrate true analytical intelligence. The introduction of Gemini 1.5 is a step forward, bringing enhanced capabilities for processing long texts. Yet, the question remains: can these models truly grasp the complexities of financial transactions and provide actionable insights? It’s not just about understanding more data; it’s about understanding it better.

Implementation Hurdles

    1. Data Quality and Preprocessing: Generative AI models are only as good as the data they’re trained on. Inconsistent or low-quality data can skew results, leading to false positives or overlooked threats. For financial institutions, ensuring clean, standardized, and comprehensive datasets is not just important—it’s imperative. This involves meticulous data preprocessing, including feature engineering, normalization, and handling missing values. Each step is crucial to preparing the data for training, ensuring that the models can perform at their best.
    2. Model Training and Scalability: Training large-scale models like LLMs and GANs is no small feat. The process is computationally intensive, requiring vast resources and advanced infrastructure. Scalability becomes a critical issue here. Strategies like distributed training and model parallelization, along with efficient hardware utilization, are needed to make these models not just a technological possibility but a practical tool for real-world AML/CFT systems.
    3. Evaluation Metrics and Interpretability: How do we measure success in generative AI for financial crime compliance? Traditional metrics like reconstruction error or sample quality don’t always capture the whole picture. In this context, evaluation criteria need to be more nuanced, combining these general metrics with domain-specific ones that reflect the unique demands of AML/CFT. But it’s not just about performance. The interpretability of these models is equally vital. Without clear, understandable outputs, building trust with regulators and compliance officers remains a significant challenge.
    4. Potential Limitations and Pitfalls: As powerful as generative AI can be, it’s not infallible. These models can inherit biases and inconsistencies from their training data, leading to unreliable or even harmful outputs. It’s a risk that cannot be ignored. Implementing robust techniques for bias detection and mitigation, alongside rigorous risk assessment and continuous monitoring, is essential to ensure that generative AI is used safely and responsibly in financial crime compliance.
    Navigating these challenges is no small task, but it’s a necessary journey. To truly unlock the potential of generative AI in combating financial crime, we must address these obstacles head-on, with a clear strategy and a commitment to innovation.

Regulatory and Ethical Considerations

As we venture into the integration of generative AI in anti-money laundering (AML) and counter-financing of terrorism (CFT) systems, it’s not just the technological challenges that we need to be mindful of. The regulatory and ethical landscape presents its own set of complexities, demanding careful navigation and proactive engagement with stakeholders.

Regulatory Compliance

The deployment of generative AI in AML/CFT isn’t simply about adopting new technology—it’s about doing so within a framework that respects the rule of law. This means a close, ongoing dialogue with regulatory bodies to ensure that these advanced systems align with existing laws, guidelines, and best practices. Establishing clear standards for the development, validation, and governance of AI models is not just advisable; it’s essential. Without a robust regulatory framework, even the most sophisticated AI models could become liabilities rather than assets.

Ethical AI and Fairness

In the realm of financial crime compliance, the stakes are high. Decisions influenced by AI models can have significant impacts on individuals and businesses, which makes fairness and non-discrimination more than just ethical considerations—they are imperatives. Generative AI systems must be rigorously tested for biases and unintended consequences. This means implementing rigorous validation processes to ensure that these models uphold the principles of ethical AI and fairness, especially in high-stakes scenarios. We’re not just building technology; we’re building trust.

Privacy and Data Protection

With generative AI comes the promise of advanced capabilities like synthetic data generation and privacy-preserving analytics. But these innovations must be handled with care. Compliance with data protection regulations and the safeguarding of customer privacy rights should be at the forefront of any implementation strategy. Clear policies and robust safeguards are crucial to protect sensitive financial information, ensuring that the deployment of these models doesn’t inadvertently compromise the very data they are designed to protect.

Model Security and Robustness

Generative AI models, such as LLMs and GANs, bring immense power but also vulnerabilities. The risk of adversarial attacks or model extraction cannot be overlooked. To safeguard the integrity and confidentiality of these models, robust security measures need to be put in place. Techniques like differential privacy, watermarking, and the use of secure enclaves should be explored and implemented to protect these systems from malicious exploitation. It’s about creating not just intelligent models, but resilient ones.

{{cta-first}}

Gen AI in Tookitaki FinCense

Tookitaki’s FinCense platform is pioneering the use of Generative AI to redefine financial crime compliance. We are actively collaborating with our clients through lighthouse projects to put the advanced Gen AI capabilities of FinCense to the test. Powered by a local LLM engine built on Llama models, FinCense introduces a suite of features designed to transform the compliance landscape.

One standout feature is the Smart Disposition Engine, which automates the handling of alerts with remarkable efficiency. By incorporating rules, policy checklists, and reporting in local languages, this engine streamlines the entire alert management process, cutting manual investigation time by an impressive 50-60%. It’s a game-changer for compliance teams, enabling them to focus on complex cases rather than getting bogged down in routine tasks.

Then there’s FinMate, an AI investigation copilot tailored to the unique needs of AML compliance professionals. Based on a local LLM model, FinMate serves as an intelligent assistant, offering real-time support during investigations. It doesn’t just provide information; it delivers actionable insights and suggestions that help compliance teams navigate through cases more swiftly and effectively.

Moreover, the platform’s Local Language Reporting feature enhances its usability across diverse regions. By supporting multiple local languages, FinCense ensures that compliance teams can manage alerts and generate reports seamlessly, regardless of their location. This localization capability is more than just a convenience—it’s a critical tool that enables teams to work more effectively within their regulatory environments.

With these cutting-edge features, Tookitaki’s FinCense platform is not just keeping up with the evolution of financial crime compliance—it’s leading the way, setting new standards for what’s possible with Generative AI in this critical field.

Final Thoughts

The future of financial crime compliance is set to be revolutionized by the advancements in AI and ML. Over the next few years, generative AI will likely become an integral part of our arsenal, pushing the boundaries of what’s possible in detecting and preventing illicit activities. Large Language Models (LLMs) like GPT-3 and its successors are not just promising—they are poised to transform the landscape. From automating the generation of Suspicious Activity Reports (SARs) to conducting in-depth risk assessments and offering real-time decision support to compliance analysts, these models are redefining what’s possible in the AML/CFT domain.

But LLMs are only part of the equation. Generative Adversarial Networks (GANs) are also emerging as a game-changer. Their ability to create synthetic, privacy-preserving datasets is a breakthrough for financial institutions struggling with limited access to real-world data. These synthetic datasets can be used to train and test machine learning models, making it easier to simulate and study complex financial crime scenarios without compromising sensitive information.

The real magic, however, lies in the convergence of LLMs and GANs. Imagine a system that can not only detect anomalies but also generate synthetic transaction narratives or provide explanations for suspicious activities. This combination could significantly enhance the interpretability and transparency of AML/CFT systems, making it easier for compliance teams to understand and act on the insights provided by these advanced models.

Embracing these technological advancements isn’t just an option—it’s a necessity. The challenge will be in implementing them responsibly, ensuring they are used to build a more secure and transparent financial ecosystem. This will require a collaborative effort between researchers, financial institutions, and regulatory bodies. Only by working together can we address the technical and ethical challenges that come with deploying generative AI, ensuring that these powerful tools are used to their full potential—responsibly and effectively.

The road ahead is filled with promise, but it’s also lined with challenges. By navigating this path with care and foresight, we can leverage generative AI to not only stay ahead of financial criminals but to create a future where the financial system is safer and more resilient than ever before.

By submitting the form, you agree that your personal data will be processed to provide the requested content (and for the purposes you agreed to above) in accordance with the Privacy Notice

success icon

We’ve received your details and our team will be in touch shortly.

In the meantime, explore how Tookitaki is transforming financial crime prevention.
Learn More About Us
Oops! Something went wrong while submitting the form.

Ready to Streamline Your Anti-Financial Crime Compliance?

Our Thought Leadership Guides

Blogs
02 Sep 2025
5 min
read

Busted in Bangsar South: Inside Malaysia’s Largest Scam Call Centre Raid

In August 2025, Malaysian police stormed a five-storey office in Bangsar South, Kuala Lumpur, arresting more than 400 people linked to what is now called the country’s largest scam call centre operation.

The raid made headlines worldwide, not only for its scale but also because of its alleged link to Doo Group, a Singapore-based fintech that sponsors English football giant Manchester United. The case has cast a harsh spotlight on the industrial scale of financial crime in Southeast Asia and the reputational risks it poses for both financial institutions and global brands.

Talk to an Expert

Background of the Scam

The dramatic raid took place on 26 August 2025, when Malaysian authorities swept into a commercial tower in Bangsar South, a thriving business district in Kuala Lumpur. Inside, they discovered a massive call centre allegedly set up to defraud victims across multiple countries.

Over 400 individuals were arrested. Videos of employees being escorted into police vans quickly went viral, symbolising the scale and industrial nature of the operation.

Initial reports linked the call centre to Doo Group, a global financial services provider with operations across Singapore, Hong Kong, London, Sydney, and Dubai. While the company has insisted that its operations remain unaffected and that it is cooperating fully with investigators, the reputational damage was already significant.

The Bangsar South raid is part of Malaysia’s wider anti-scam campaign. By mid-2025, authorities had arrested over 11,800 suspects in similar cases, with financial losses amounting to RM 1.5 billion (USD 355 million). The Bangsar South case, however, stands out because of its size, its international profile, and its link to a company with a global brand presence.

What the Case Revealed

The raid revealed troubling insights into how financial crime networks operate in the region:

1. Industrialised Fraud

A workforce of over 400 suggests this was not a small, fly-by-night scam but a structured enterprise. Staff were reportedly trained to follow scripts, handle objections, and target victims methodically, mirroring the efficiency of legitimate customer service operations.

2. Global Targeting

Reports indicate the call centre targeted victims not just in Malaysia but also overseas, raising questions about how funds were laundered across borders. The multilingual capabilities of employees further suggest international reach.

3. Reputation at Risk

The alleged connection to Doo Group highlights how reputable financial companies can be pulled into fraud narratives. Even if not directly complicit, the association underscores how thin the line can be between legitimate fintech operations and the shadow economy.

4. Oversight Gaps

The case also points to challenges regulators face in monitoring sprawling call centre operations and cross-border financial flows. By the time raids occur, thousands of victims may already have been defrauded.

Impact on Financial Institutions and Corporates

The Bangsar South raid is not just a law enforcement victory. It is a warning signal for the financial industry.

1. Reputational Fallout

When a Manchester United sponsor is linked to scams, it is not just the company that suffers. Brand trust in fintech, sports, and banking becomes collateral damage. This raises the stakes for due diligence in sponsorships and partnerships.

2. Investor and Customer Confidence

Digital finance thrives on trust. When fintechs are tied to scandals, investors hesitate and customers second-guess their safety. The Bangsar South case risks dampening enthusiasm for fintech adoption in Malaysia and the wider region.

3. Operational Risks for Banks

For financial institutions, call centre scams translate into suspicious transaction flows, mule account proliferation, and higher compliance costs. Traditional transaction monitoring often struggles to flag layered, cross-border flows connected to scams of this scale.

4. Regional Implications

Malaysia’s crackdown shows commendable resolve, but it also exposes the country as a hub for organised scam activity. This dual image, both a problem centre and an enforcement leader, will shape how regional regulators approach financial crime.

ChatGPT Image Sep 2, 2025, 12_42_49 PM

Lessons Learned from the Scam

  1. Scale ≠ Legitimacy
    A large workforce and polished infrastructure do not guarantee a legitimate business. Regulators and partners must look beyond appearances.
  2. Due Diligence is Non-Negotiable
    Global brands and institutions need deeper checks before partnerships. A sponsorship or corporate tie-up can quickly become a reputational liability.
  3. Regulatory Vigilance Matters
    The Bangsar South raid shows what decisive enforcement looks like, but it also reveals how long such scams can operate before being stopped.
  4. Cross-Border Cooperation is Critical
    Victims were likely spread across multiple jurisdictions. Without international collaboration, enforcement remains reactive.
  5. Public Awareness is Essential
    Scam call centres thrive because victims are unaware. Public education campaigns must go hand-in-hand with enforcement.

The Role of Technology in Prevention

Conventional compliance methods, such as simple blacklist checks or static rules, are no match for scam call centres operating at an industrial scale. To counter them, financial institutions need adaptive, intelligence-driven defences.

This is where Tookitaki’s FinCense and the AFC Ecosystem come in:

  • Typology-Driven Detection
    FinCense continuously updates detection logic based on real scam scenarios contributed by 200+ global financial crime experts in the AFC Ecosystem. This means emerging call centre scam patterns can be identified faster.
  • Agentic AI
    At the heart of FinCense is an Agentic AI framework, a network of intelligent agents that not only detect suspicious activity but also explain every decision in plain language. This reduces investigation time and builds regulator confidence.
  • Federated Learning
    Through federated learning, FinCense enables banks to share insights on scam flows and mule account behaviours without compromising sensitive data. It is collective intelligence at scale.
  • Smart Case Disposition
    When alerts are triggered, FinCense’s Agentic AI generates natural-language summaries, helping investigators prioritise critical cases quickly and accurately.

Moving Forward: The Future of Scam Call Centres

The Bangsar South raid may have shut down one operation, but the fight against scam call centres is far from over. As enforcement improves, fraudsters will adopt AI-driven tools, deepfake impersonations, and more sophisticated laundering methods.

For financial institutions, the path forward is clear:

  • Strengthen collaboration with regulators and peers to track cross-border scam flows.
  • Invest in adaptive technology like FinCense to stay ahead of criminal innovation.
  • Educate customers relentlessly about new fraud tactics.

The raid was a victory, but it was also a warning.

If one call centre with 400 employees can operate in plain sight, imagine how many others remain hidden. The only safe strategy for financial institutions is to stay one step ahead with collaboration, intelligence, and next-generation technology.

Busted in Bangsar South: Inside Malaysia’s Largest Scam Call Centre Raid
Blogs
28 Aug 2025
6 min
read

Locked on Video: Inside India’s Chilling Digital Arrest Scam

It began with a phone call. A senior citizen in Navi Mumbai answered a number that appeared to belong to the police. Within hours, she was trapped on a video call with men in uniforms, accused of laundering money for terrorists. Terrified, she wired ₹21 lakh into what she believed was a government-controlled account.

She was not alone. In August 2025, cases of “digital arrest” scams surged across India. An elderly couple in Madhya Pradesh drained nearly ₹50 lakh of their life savings after spending 13 days under constant video surveillance by fraudsters posing as investigators. In Rajkot, criminals used the pretext of a real anti-terror operation to extort money from a student.

These scams are not crude phishing attempts. They are meticulously staged psychological operations, exploiting people’s deepest fears of authority and social disgrace. Victims are not tricked into handing over passwords. They are coerced, minute by minute, into making transfers themselves. The results are devastating, both for individuals and the wider financial system.

Talk to an Expert

Background of the Scam

The anatomy of a digital arrest scam follows a chillingly consistent script.

1. The Call of Fear
Fraudsters begin with a phone call, often masked to resemble an official number. The caller claims the victim’s details have surfaced in a serious crime: drug trafficking, terror financing, or money laundering. The consequences are presented as immediate arrest, frozen accounts, or ruined reputations.

2. Escalation to Video
To heighten credibility, the fraudster insists on switching to a video call. Victims are connected to people wearing uniforms, holding forged identity cards, or even sitting before backdrops resembling police stations and courtrooms.

3. Isolation and Control
Once on video, the victim is told they cannot disconnect. In some cases, they are monitored round the clock, ordered not to use their phone for any purpose other than the call. Contact with family or friends is prohibited, under the guise of “confidential investigations.”

4. The Transfer of Funds
The victim is then directed to transfer money into so-called “secure accounts” to prove their innocence or pay bail. These accounts are controlled by criminals and serve as the first layer in complex laundering networks. Victims, believing they are cooperating with the law, empty fixed deposits, break retirement savings, and transfer sums that can take a lifetime to earn.

The method blends social engineering with coercive control. It is not the theft of data, but the hijacking of human behaviour.

What the Case Revealed

The 2025 wave of digital arrest scams in India exposed three critical truths about modern fraud.

1. Video Calls Are No Longer a Guarantee of Authenticity
For years, people considered video more secure than phone calls or emails. If you could see someone’s face, the assumption was that they were genuine. These scams demolished that trust. Fraudsters showed that live video, like written messages, can be staged, manipulated, and weaponised.

2. Authority Bias is a Fraudster’s Greatest Weapon
Humans are hardwired to respect authority, especially law enforcement. By impersonating police or investigators, criminals bypass the victim’s critical reasoning. Fear of prison or social disgrace outweighs logical checks.

3. Coercion Multiplies the Damage
Unlike phishing or one-time deceptions, digital arrests involve prolonged psychological manipulation. Victims are kept online for days, bombarded with threats and false evidence. Under this pressure, even cautious individuals break down. The results are not minor losses, but catastrophic financial wipe-outs.

4. Organised Networks Are Behind the Scenes
The professionalism and scale suggest syndicates, not lone operators. From forged documents to layered mule accounts, the fraud points to criminal hubs capable of running scripted operations across borders.

Impact on Financial Institutions and Corporates

Though victims are individuals, the implications extend far into the financial and corporate world.

1. Reputational Risk
When victims lose life savings through accounts within the banking system, they often blame their bank as much as the fraudster. Even if technically blameless, institutions suffer a hit to public trust.

2. Pressure on Fraud Systems
Digital arrest scams exploit authorised transactions. Victims themselves make the transfers. Traditional detection tools that focus on unauthorised access or password breaches cannot easily flag these cases.

3. Global Movement of Funds
Money from scams rarely stays local. Transfers are routed across borders within hours, layered through mule accounts, e-wallets, and fintech platforms. This complicates recovery and exposes gaps in international coordination.

4. Corporate Vulnerability
The threat is not limited to retirees or individuals. In Singapore earlier this year, a finance director was tricked into wiring half a million dollars during a deepfake board call. Digital arrest tactics could just as easily target corporate employees handling high-value transactions.

5. Regulatory Expectations
As scams multiply, regulators are pressing institutions to demonstrate stronger customer protections, more resilient monitoring, and greater collaboration. Failure to act risks not only reputational damage but also regulatory penalties.

ChatGPT Image Aug 27, 2025, 11_32_20 AM

Lessons Learned from the Scam

For Individuals

  • Treat unsolicited calls from law enforcement with suspicion. Real investigations do not begin on the phone.
  • Verify independently by calling the published numbers of agencies.
  • Watch for signs of manipulation, such as demands for secrecy or threats of immediate arrest.
  • Educate vulnerable groups, particularly senior citizens, about how these scams operate.

For Corporates

  • Train employees, especially those in finance roles, to recognise coercion tactics.
  • Require secondary verification for urgent, high-value transfers, especially when directed to new accounts.
  • Encourage a speak-up culture where staff can challenge suspicious instructions without fear of reprimand.

For Financial Institutions

  • Monitor for mule account activity. Unexplained inflows followed by rapid withdrawals are a red flag.
  • Run customer awareness campaigns, explaining how digital arrest scams work.
  • Share intelligence with peers and regulators to prevent repeat incidents across institutions.

The Role of Technology in Prevention

Digital arrest scams prove that traditional safeguards are insufficient. Fraudsters are not stealing credentials but manipulating behaviour. Prevention requires smarter, adaptive systems.

1. Behavioural Monitoring
Transactions made under duress often differ from normal patterns. Advanced analytics can detect anomalies, such as sudden large transfers from accounts with low historical activity.

2. Typology-Driven Detection
Platforms like Tookitaki’s FinCense leverage the AFC Ecosystem to encode real-world scam scenarios into detection logic. As digital arrest typologies are identified, they can be integrated quickly to improve monitoring.

3. AI-Powered Simulations
Institutions can run simulations of coercion-based scams to test whether their processes would withstand them. These exercises reveal gaps in escalation and verification controls.

4. Federated Learning for Collective Defence
With federated learning, insights from one bank can be shared across many without exposing sensitive data. If one institution sees a pattern in digital arrest cases, others can benefit almost instantly.

5. Smarter Alert Management
Agentic AI can review and narrate the context of alerts, allowing investigators to understand whether unusual activity stems from duress. This speeds up response times and prevents irreversible losses.

Conclusion

The digital arrest scam is not just a fraud. It is a form of psychological captivity, where victims are imprisoned through fear on their own devices. In 2025, India saw a surge of such cases, stripping people of their savings and shaking trust in digital communications.

The message is clear: scams no longer rely on technical breaches. They rely on exploiting human trust. For individuals, the defence is awareness and verification. For corporates, it is embedding strong protocols and encouraging a culture of questioning. For financial institutions, the challenge is profound. They must detect authorised transfers made under coercion, collaborate across borders, and deploy AI-powered defences that learn as fast as the criminals do.

If 2024 was the year of deepfake deception, 2025 is becoming the year of coercion-based fraud. The industry’s response will determine whether scams like digital arrests remain isolated tragedies or become a systemic crisis. Protecting trust is no longer optional. It is the frontline of financial crime prevention.

Locked on Video: Inside India’s Chilling Digital Arrest Scam
Blogs
01 Sep 2025
6 min
read

Inside the New Payments Platform (NPP): How Australia’s Real-Time Payments Are Changing Finance and Fraud

Australia’s real-time payments revolution is reshaping finance, but it also brings new risks and compliance challenges.

Imagine sending money to a friend, paying a bill, or receiving your salary in seconds, no matter the day or hour. That vision became reality in Australia with the launch of the New Payments Platform (NPP) in 2018. Since then, the NPP has transformed how Australians transact, powering faster, smarter, and more flexible payments.

But while the benefits are undeniable, the NPP has also introduced fresh risks. Fraudsters and money launderers now exploit the speed of real-time payments, forcing banks, fintechs, and regulators to rethink how they approach compliance. In this blog, we take a deep look at the NPP, exploring its origins, features, benefits, risks, and what the future holds.

Talk to an Expert

What is the New Payments Platform (NPP)?

The NPP is Australia’s real-time payments infrastructure, designed to allow funds to be transferred between bank accounts in seconds. Unlike traditional bank transfers, which could take hours or days, the NPP settles payments instantly, around the clock, 365 days a year.

A Collaborative Effort

The NPP was launched in February 2018 as a collaborative initiative between the Reserve Bank of Australia (RBA), major banks, and key financial institutions. It was developed to modernise Australia’s payments infrastructure and to match the expectations of a digital-first economy.

Core Components of the NPP

  1. Fast Settlement Service (FSS): Operated by the RBA, this ensures transactions settle instantly across participating banks.
  2. Overlay Services: Products built on top of the NPP to offer tailored use cases, such as Osko by BPAY for fast peer-to-peer payments.
  3. PayID: A feature that allows customers to link easy identifiers such as email addresses or phone numbers to bank accounts for faster payments.
  4. ISO 20022 Data Standard: Enables rich data to travel with payments, improving transparency and reporting.

The NPP is not just a new payment rail. It is an entirely new ecosystem designed to support innovation, competition, and efficiency.

Key Features of the NPP

  • Speed: Transactions settle in less than 60 seconds.
  • Availability: Operates 24/7/365, unlike traditional settlement systems.
  • Rich Data: ISO 20022 messaging allows businesses to include detailed payment references.
  • Flexibility: Overlay services enable innovative new use cases, from consumer-to-business payments to government disbursements.
  • Ease of Use: PayID removes the need for remembering BSB and account numbers.

Benefits of the NPP for Australia

1. Consumer Convenience

Everyday Australians can send and receive money instantly. Whether splitting a dinner bill or paying rent, transactions are seamless and fast.

2. Business Efficiency

Businesses benefit from faster supplier payments, real-time payroll, and improved cash flow management. For SMEs, this reduces dependency on costly credit.

3. Government Services

Government agencies can issue refunds, grants, and welfare payments in real time, improving citizen experience and efficiency.

4. Financial Inclusion and Innovation

The NPP creates opportunities for fintechs to build new payment products and services, driving competition and giving consumers more choice.

5. Enhanced Transparency

The rich data standards improve reconciliation and reduce errors, saving time and cost for businesses.

The Risks and Challenges of Real-Time Payments

As with any innovation, the NPP comes with challenges. The very features that make it attractive to consumers also make it attractive to fraudsters and money launderers.

1. Authorised Push Payment (APP) Scams

Fraudsters use social engineering to trick customers into sending money themselves. Because NPP payments are instant, victims often cannot recover funds once transferred.

2. Money Mule Networks

Criminals exploit mule accounts to move illicit funds quickly. Dormant accounts or those opened with synthetic identities are often used as conduits.

3. Increased Operational Pressure

Compliance teams that once had hours to review suspicious transactions now have seconds. This shift requires entirely new approaches to monitoring.

4. False Positives and Noise

Traditional systems generate vast numbers of false positives, which overwhelm investigators. With NPP volumes growing, this problem is magnified.

5. Cyber and Identity Risks

Fraudsters use phishing, malware, and stolen credentials to take over accounts and push funds instantly.

ChatGPT Image Aug 26, 2025, 10_17_36 AM

Regulatory and Industry Response

Australian regulators have moved swiftly to address these risks.

  • AUSTRAC: Expects banks and payment providers to implement effective real-time monitoring and suspicious matter reporting tailored to NPP risks.
  • ASIC: Focuses on consumer protection and ensuring victims of scams are treated fairly.
  • Industry Initiatives: The Australian Banking Association has been working on scam-reporting frameworks and shared fraud detection systems across banks.
  • Government Action: Proposals to make banks reimburse scam victims are under consideration, following models in the UK.

The message is clear: institutions must invest in smarter compliance and fraud prevention tools.

Fraud and AML in the NPP Era

Why Legacy Systems Fall Short

Legacy monitoring systems were built for batch processing. They cannot keep up with the millisecond-level requirements of real-time payments. By the time a suspicious transaction is flagged, the funds are gone.

What Next-Gen Solutions Look Like

Modern systems use AI and machine learning to:

  • Detect anomalies in real time.
  • Link suspicious activity across accounts, devices, and geographies.
  • Reduce false positives by learning from investigator feedback.
  • Provide regulator-ready explanations for every alert.

Key Fraud Red Flags in NPP Transactions

  • Large transfers to newly created accounts.
  • Multiple small payments designed to avoid thresholds.
  • Sudden changes in device or login behaviour.
  • Beneficiaries in high-risk jurisdictions.
  • Rapid pass-through activity with no balance retention.

Spotlight on Technology: Tookitaki’s Role

As the risks around NPP accelerate, technology providers are stepping up. Tookitaki’s FinCense is purpose-built for the demands of real-time payments.

How FinCense Helps

  • Real-Time Monitoring: Detects suspicious activity in milliseconds.
  • Agentic AI: Continuously adapts to new scam typologies, reducing false positives.
  • Federated Intelligence: Accesses insights from the AFC Ecosystem, a global compliance community, while preserving privacy.
  • FinMate AI Copilot: Assists investigators with summaries, recommendations, and regulator-ready narratives.
  • AUSTRAC-Ready Compliance: Built-in reporting for SMRs, TTRs, and detailed audit trails.

Local Adoption

FinCense is already being used by community-owned banks like Regional Australia Bank and Beyond Bank. These partnerships demonstrate that even mid-sized institutions can meet AUSTRAC’s expectations while delivering excellent customer experiences.

The Future of NPP in Australia

The NPP is still evolving. Several developments will shape its future:

1. PayTo Expansion

PayTo, a digital alternative to direct debit, is gaining traction. It allows consumers to authorise payments directly from their accounts, offering flexibility but also new fraud vectors.

2. Cross-Border Potential

Future integration with Asia-Pacific payment systems could expand NPP beyond Australia, increasing both opportunities and risks.

3. Smarter Fraud Typologies

Criminals are already exploring ways to exploit deepfake technology, synthetic identities, and AI-driven scams. Fraud prevention must evolve just as quickly.

4. Industry Collaboration

Expect stronger cooperation between banks, fintechs, regulators, and technology vendors. Shared fraud databases and federated intelligence models will be crucial.

Conclusion

The New Payments Platform has reshaped Australia’s payments landscape. It delivers speed, convenience, and innovation that benefit consumers, businesses, and government agencies. But with opportunity comes risk.

Fraudsters have been quick to exploit the instant nature of NPP, forcing institutions to rethink how they detect and prevent financial crime. The solution lies in real-time, AI-powered monitoring platforms that adapt to new typologies and reduce compliance costs.

For Australian institutions, the NPP is more than a payment rail. It is the foundation of a new financial ecosystem. The winners will be those who embrace innovation, partner with the right AML vendors, and build trust through smarter compliance.

Pro tip: If your institution still relies on batch monitoring, you are already behind. Now is the time to modernise and future-proof your compliance with intelligent fraud and AML platforms.

Inside the New Payments Platform (NPP): How Australia’s Real-Time Payments Are Changing Finance and Fraud