Blog

Solving crimes in the financial landscape: A Q&A with Tookitaki

Site Logo
Tookitaki
05 January 2023
read
12 min

“REDEFINING financial crime compliance to make the world a better place.”

Following the company’s motto, Tookitaki’s initiative of breaking silos and providing a platform to collaborate and fight financial crime, the company expanded their business in the Philippine market to bring scalable and machine learning-powered product offerings to help financial institutions address money laundering risks.

Tookitaki (a Thunes company) is a regulatory technology company offering financial crime detection and prevention solutions to some of the world’s leading banks and fintech companies to help them transform their anti-money laundering (AML) and compliance technology needs.

Founded in November 2014, the company employs over 100 people across the US, the UK, Singapore, Taiwan, Indonesia, the Philippines, and the UAE.

To know more about Tookitaki and its approach in providing end-to-end financial crime solutions to some of the world’s leading financial institutions, BusinessWorld reached out to Tookitaki’s Chief Executive Officer and founder Abhishek Chatterjee to share his thoughts and insights. Below is the excerpt of the interview:

Please introduce us to Tookitaki. What are your visions and goals?

Mr. Chatterjee: Headquartered in Singapore, Tookitaki provides end-to-end financial crime solutions to some of the world’s leading financial institutions. In the ASEAN region, some of the largest banks and fintech companies rely on Tookitaki to transform their AML compliance needs. Tookitaki was founded in November 2014 and employs over 100 employees across our offices in Asia, Europe, and the US.

Fighting financial crime needs to be a collective effort through centralized intelligence-gathering. Aimed at breaking silos, the AFC (anti-financial crime) Ecosystem, includes a network of experts and provides a platform for the experts to create a knowledge base to share financial crime scenarios.

This collective intelligence is the ability of a large group of AFC experts to pool their knowledge, data, and skills to tackle complex problems related to financial crime and pursue innovative ideas.

The AFC ecosystem is a game changer since it helps remove the information vacuum created by siloed operations. Our network of experts includes risk advisers, legal firms, AFC specialists, consultancies, and financial institutions from across the globe.

Tookitaki’s AML Suite (AMLS) is an operating system comprising four modules, such as transaction monitoring, smart screening, customer risk scoring, and the Case Manager, under one roof to address our customers’ compliance requirements. It provides holistic risk coverage, sharper detection, and significantly fewer false alerts. It can be deployed in multiple environments including the public cloud, private cloud, and data center.

The AFC Ecosystem and the AMLS work in tandem and help our stakeholders widen their view of risk from an internal one to an industry-wide one across organizations and borders. Moreover, they can do so without compromising privacy and security.

Tookitaki means to hide and seek in Bengali. The name perfectly articulates our intention to uncover the hide-and-seek nature of financial crime with artificial intelligence.

Today, Tookitaki (A Thunes company) is leading AML initiatives in most of the key digital banks in Asia. One of the largest digital banks in the Philippines, one of the world’s largest fintech and payment companies headquartered in China, one of Asia’s largest digital banks based out of Singapore, and one of the fastest-growing crypto wallets based out of Asia.

Tookitaki’s innovations in regulatory compliance have been acknowledged worldwide. Chartis Research named the company a Rising Star in its 2021 RiskTech 100 report. In 2020, the company won the Regulation Asia Awards for Excellence and G20TechSprint accelerator. In 2019, the company was featured in the World Economic Forum’s Technology Pioneer List.

 

What products and services do you plan to offer in the local market, and how would you differentiate Tookitaki from other vendors providing AML compliance solutions? What makes it “innovative” in addressing a regulatory or market need?

Mr. Chatterjee: At Tookitaki, we have always believed that technology is for the greater good. The AFC Ecosystem is a community-driven first of its kind initiative aimed at breaking silos and providing a platform to collaborate and fight financial crime. The AFC Ecosystem’s single motto is to break silos and provide a platform where AFC experts across the globe can use their knowledge and expertise to build a safer society.

The AFC Ecosystem is a game changer since it helps remove the information vacuum created by siloed operations. Our network of experts includes risk advisers, legal firms, AFC specialists, consultancies, and financial institutions from across the globe.

Underpinning it is a valued partnership program that is mutually beneficial for all stakeholders engaged in reducing the laundering of illicit proceeds of crime and terrorism.

Tookitaki’s offerings in the Philippines primarily include the AFC Ecosystem and the AMLS.

Our community comprises of experts covering the entire spectrum of money laundering: placement, layering, and integration. They include Financial Crime Compliance (FCC), law enforcement, and nongovernment organizations to name a few who are all giants in their own right. With this diverse community approach, financial institutions, who are the first line of defense, are empowered to identify “dirty money” patterns that aren’t easily discoverable. Operationalizing this collective intelligence results in the creation of more comprehensive risk policies.

Tookitaki’s AMLS covers the entire customer onboarding and ongoing processes through its transaction monitoring, smart screening, customer risk scoring, and the case manager. Together they provide holistic risk coverage, sharper detection, and significant effort reduction in managing false alerts. It is uniquely designed to complement existing systems by cutting through the noise and clutter generated by large volumes of alerts in legacy transaction monitoring processes.

For our customers like traditional banks and fintech companies, an extensive understanding of their consumers is a must for effective and comprehensive risk policies. The AMLS is a product that enables this through the combination of its Intelligent Alert Detection (IAD) for detection and prevention along with its Smart Alert Management (SAM) for Management.

With technology touching every facet of society, money mules and fraudulent accounts are a growing problem that needs to be addressed to assist in the country’s efforts to prevent financial crime, notably in the government sector. Tookitaki aims to improve the honesty of the Philippines’ financial market by providing comprehensive AML compliance programs for fintech companies, which include payment service providers, e-wallet providers, and virtual asset service providers.

Please elaborate more on Tookitaki’s Anti-Money Laundering Suite or AMLS and how it would apply to banks.

Mr. Chatterjee: Tookitaki’s AMLS covers the entire customer onboarding and ongoing processes through transaction monitoring, smart screening, customer risk scoring and the case manager. Together they provide holistic risk coverage, sharper detection, and significant effort reduction in managing false alerts. It is uniquely designed to complement existing systems by cutting through the noise and clutter generated by large volumes of alerts in legacy transaction monitoring processes.

As mentioned earlier, our AMLS has two main functionalities: IAD and SAM.

The SAM functionality of AMLS specifically helps banks with:

• management and filtering of false alerts

• ease of integration into their current process governance

• operational guidance from past learnings with other banks

Based on our previous customer case studies, we can say that when customers start using the SAM module, they can expect a RoI (return of investment) in approximately nine months and along with that we deliver a superior experience via:

Operational efficiency through alert prioritization

SAM across transaction monitoring and screening helps in automated triaging and helps categorize all alerts into three risk levels: L1 (Low risk), L2 (Moderate risk), and L3 (High risk).

Hence, as part of the alert handling/treatment process, there is no requirement for manual triaging since all alerts have been triaged by SAM into the aforementioned risk levels.

Faster time to market

SAM automatically builds a machine learning (ML) model that trains on customer data. The model result aligns with customer risk policy and data instead of a generic industry ML solution. The in-built Intelligent risk indicator framework automatically generates thousands of risk indicators (data science features) from input data.

An intelligent model learning framework then selects the most relevant risk indicators and chooses the right hyper-parameters to tune the model to achieve high accuracy at optimal compute cost. This is a fully automated process that requires minimal data science effort from the client team.

Continuous improvement

Through our Champion-Challenger which learns from investigator feedback and changing data, continuous improvement occurs systematically. It takes in incremental data, which includes new customers, accounts, transactions, and the latest investigator feedback, and provides consistent results through continuous learning.

Ease of integration into the current process governance

The module integrates seamlessly with the existing systems as well as the primary using standardized data models and ready adapters. Investigators can still use the existing workflow and click on the link to access alert information. This makes it easier to investigate and dispose of alerts faster.

Apart from AML solutions, what other financial crimes does Tookitaki solve?

Mr. Chatterjee: Tookitaki believes in giving back to society. We are on a mission to improve lives by tackling money laundering.

Crimes such as human trafficking, drug trafficking, illegal arms deals, and many more are tied to money laundering. Vulnerable people are being affected daily by this corruption. We offer resources, information, and a strong commitment to helping eliminate money laundering and related crimes.

We have worked closely with the survivors of human trafficking to understand the patterns of behavior around these heinous crimes and determine how we can help tackle them. Our work in this endeavor is driven by a responsibility to help make the world a safer place for everyone.

We believe in using technology for the greater good. We want to lead from the front, where crimes such as trafficking and terrorism can be eliminated via the prevention of financial crime.

What are the factors you considered in choosing the Philippines to launch an AML software tool?

Mr. Chatterjee: With the rise of technology, the world is slowly shifting to cashless transactions. According to a study from 2020-2025, cashless transactions are expected to increase by 80% and cross border payments will be valued at $156 trillion. This borderless transaction increases money laundering crimes and allows money launderers to hide in plain sight undetected.

In the Philippines, half of Filipinos own a financial account, as more Filipinos become part of the banking system, financial crimes will become more advanced. Financial institutions need to look beyond traditional tools to solve a sophisticated and growing problem to keep pace with increasing business and regulatory requirements.

The Philippines is in a strategic position because of its rising economy and being the center of international trade and traffic makes it vulnerable to a host of financial crimes and financial terrorism. Moreover, the growing number of money transfers sent by overseas Filipino workers to their loved ones adds to the responsibility of the AMLS.

Do you have data on cases of money laundering in the country?

Mr. Chatterjee: The Anti Money Laundering Report states that the country has always been vulnerable when it comes to money laundering and financial terrorism. It is vital that the country address the growing problem.

What we’ve noticed is that the political landscape in the Philippines is ever-changing. In 2000, the Philippines was placed under the Financial Action Task Force (FATF), falling under its list of Non-Cooperative Countries and Territories due to lack of basic AML frameworks.

The Philippine government enacted Republic Act (RA) 9160 of the Anti-Money Laundering Act of 2001, which preserved the integrity of bank accounts and ensured the Philippines does not become a haven for money laundering activities. As an added precaution, Philippine authorities will assist in transnational investigations to prosecute those found who are found guilty. Since then, in recent years, various laws have amended RA 9160 and various industries involving finances have been added to the existing laws as well as harsher sanctions for those found guilty of money laundering activities. Additional powers were also granted to the Anti-Money Laundering Council and other concerned persons.

The Philippines has returned to the “gray list” as of June 2021. The FATF has commended the country for its continuing efforts to eradicate the threats of money laundering and encourage the country to further strengthen its measures. And we as a trusted partner are pleased to assist the Philippine government with its goal of eradicating and eliminating financial terrorism, no country in the world should be a safe haven for criminals.

Financial institutions are inundated with voluminous false positives and case backlogs that add to costs and prevent them from filtering out high-quality alerts. How does your solution help address this problem?

Mr. Chatterjee: Tookitaki was a pioneer in identifying the use case of ML in AML compliance and our ideas came into reality with our historic partnership with the United Overseas Bank Ltd. (UOB) in Singapore.

In December 2020, we became the first in the Asia-Pacific region to deploy a complete AML solution leveraging ML in production concurrently in transaction monitoring and name screening.

The SAM functionality of AMLS specifically helped with management and filtering of false alerts that eliminated the need for manual triaging since all alerts get triaged by SAM as per categorized risk levels, such as low, medium, and high. Ease of integration into their current process governance thereby making it easier for the investigators to investigate and dispose of alerts faster.

As a result, UOB witnessed 70% reduction in false positives for individual names and 60% reduction in false positives for corporate names. The solution also helped with a 50% reduction in false positives with less than 1% misclassification and 5% increase in fileable suspicious activity reports.

This is yet another example of how Tookitaki sets new standards for the regulatory compliance industry’s fight against money laundering.

We have partnered with well-known fintech companies in the Philippines to assist local companies to stay on top of their compliance requirements and we hope to expand our partnership with even more fintech companies in the future.

What do you think are the biggest risks faced by banks being used for money laundering and how do you plan to mitigate or eliminate these risks?

Mr. Chatterjee: Banks need to have a holistic view of money laundering risks and the threat scape across various banking segments such as corporate, retail, and private. Existing static and granular rules-based approaches, which are oblivious to the holistic trend with a narrow and uni-dimensional focus, are not capable of doing the same. Existing rules-based systems produced a significant volume of false positives. These false leads are a drain on productivity as they take significant time and resources to be disposed of. In the AML compliance space, banks are wasting more $3.5 billion per year chasing false leads because of outdated AML systems that rely on stale rules and scenarios and generate millions of false positives, according to research.

Undoubtedly, using limited resources to close off non-material and unimportant alerts is manual and onerous, resulting in huge backlogs for both processes and missed/delayed suspicious activity report filings. Furthermore, the ballooning costs of AML compliance coupled with the high volume of backlog alerts swamp compliance teams and potentially distract them from “true” high-risk events and customer circumstances.

Alert investigation becomes a time-consuming and labor-intensive affair as the compliance team spends significant time gathering data and analyzing it to differentiate illegitimate activities from legitimate ones. Disparate data sources and highly complex business processes add to the difficulty of the investigation team in analyzing the links between parties and transactions.

As mentioned earlier, Tookitaki’s AMLS includes transaction monitoring, smart screening, customer risk scoring, and case management, a centralized investigation solution.

Transaction monitoring looks for suspicious transactions across different systems. It unlocks the power of Tookitaki’s library of typologies to detect hidden suspicious patterns.

Tookitaki’s AMLS generates fewer alerts of higher quality and then segregates them into low, medium, or high-risk alerts so companies can prioritize their investigations. The AMLS also updates regularly to include new money laundering patterns.

Smart screening watches out for high-risk individuals and corporate customers. Tookitaki designed the name screening module to handle a wider range of complex name permutations. To reduce the number of undetermined hits, Tookitaki enriched the module with inference features and additional customer profile identifiers. Tookitaki’s name screening module also reduces false positives, which happens when AML software incorrectly flags a customer as high-risk.

The Customer Risk Scoring module empowers banks in reducing their cost of compliance by providing an actual consumer view. This is backed by dynamic risk assessment that is self-evolving based on consumers’ new financial patterns.

ML models, too, benefit AFC ecosystems. For one, it increases effectiveness in identifying suspicious activities due to its sharper focus on data anomalies rather than threshold triggering. ML models also allow for easier customization of data features to accurately target specific risks, as well as enable extended look-back periods to detect more complex scenarios.

Any other insights you’d like to share?

Mr. Chatterjee: The AFC Ecosystem is now live, which means it is now open to the broader public. The ecosystem has grown considerably over the past few months owing to the active contribution by the experts. The AFC Ecosystem is a strong testament to how technology contributes to the critical mission of helping financial services combat crime and the financing of terrorism. With the ecosystem being open to the public, an AFC Honoree Badge Program has been launched because we believe that together we can make a difference.

(As appeared on Business World)

By submitting the form, you agree that your personal data will be processed to provide the requested content (and for the purposes you agreed to above) in accordance with the Privacy Notice

success icon

We’ve received your details and our team will be in touch shortly.

In the meantime, explore how Tookitaki is transforming financial crime prevention.
Learn More About Us
Oops! Something went wrong while submitting the form.

Ready to Streamline Your Anti-Financial Crime Compliance?

Our Thought Leadership Guides

Blogs
15 Sep 2025
6 min
read

Fake Bonds, Real Losses: Unpacking the ANZ Premier Wealth Investment Scam

Introduction: A Promise Too Good to Be True

An email lands in an inbox. The sender looks familiar, the branding is flawless, and the offer seems almost irresistible: exclusive Kiwi bonds through ANZ Premier Wealth, safe and guaranteed at market-beating returns.

For many Australians and New Zealanders in June 2025, this was no hypothetical. The emails were real, the branding was convincing, and the investment opportunity appeared to come from one of the region’s most trusted banks.

But it was all a scam.

ANZ was forced to issue a public warning after fraudsters impersonated its Premier Wealth division, sending out fake offers for bond investments. Customers who wired money were not buying bonds — they were handing their savings directly to criminals.

This case is more than a cautionary tale. It represents a growing wave of investment scams across ASEAN and ANZ, where fraudsters weaponise trust, impersonate brands, and launder stolen funds with alarming speed.

Talk to an Expert

The Anatomy of the Scam

According to ANZ’s official notice, fraudsters:

  • Impersonated ANZ Premier Wealth staff. Scam emails carried forged ANZ branding, professional signatures, and contact details that closely mirrored legitimate channels.
  • Promoted fake bonds. Victims were promised access to Kiwi and corporate bonds, products usually seen as safe, government-linked investments.
  • Offered exclusivity. Positioning the deal as a Premier Wealth opportunity added credibility, making the offer seem both exclusive and limited.
  • Spoofed domains. Emails originated from look-alike addresses, making it difficult for the average customer to distinguish real from fake.

The scam’s elegance lay in its simplicity. There was no need for fake apps, complex phishing kits, or deepfakes. Just a trusted brand, professional language, and the lure of safety with superior returns.

Why Victims Fell for It: The Psychology at Play

Fraudsters know that logic bends under the weight of trust and urgency. This scam exploited four psychological levers:

  1. Brand Authority. ANZ is a household name. If “ANZ” says a bond is safe, who questions it?
  2. Exclusivity. By labelling it a Premier Wealth offer, the scam hinted at privileged access — only for the chosen few.
  3. Fear of Missing Out. “Limited time only” messaging pressured quick action. The less time victims had to think, the less likely they were to spot inconsistencies.
  4. Professional Presentation. Logos, formatting, even fake signatures gave the appearance of authenticity, reducing natural scepticism.

The result: even financially literate individuals were vulnerable.

ChatGPT Image Sep 13, 2025, 11_02_17 AM

The Laundering Playbook Behind the Scam

Once funds left victims’ accounts, the fraud didn’t end — it evolved into laundering. While details of this specific case remain under investigation, patterns from similar scams offer a likely playbook:

  1. Placement. Victims wired money into accounts controlled by money mules, often locals recruited under false pretences.
  2. Layering. Funds were split and moved quickly:
    • From mule accounts into shell companies posing as “investment firms.”
    • Through remittance channels across ASEAN.
    • Into cryptocurrency exchanges to break traceability.
  3. Integration. Once disguised, the money resurfaced as seemingly legitimate — in real estate, vehicles, or layered back into financial markets.

This lifecycle illustrates why investment scams are not just consumer fraud. They are also money laundering pipelines that demand the attention of compliance teams and regulators.

A Regional Epidemic

The ANZ Premier Wealth scam is part of a broader pattern sweeping ASEAN and ANZ:

  • New Zealand: The Financial Markets Authority recently warned of deepfake investment schemes featuring fake political endorsements. Victims were shown fabricated “news” videos before being directed to fraudulent platforms.
  • Australia: In Western Australia alone, more than A$10 million was lost in 2025 to celebrity-endorsement scams, many using doctored images and fabricated interviews.
  • Philippines and Cambodia: Scam centres linked to investment fraud continue to proliferate, with US sanctions targeting companies enabling their operations.

These cases underscore a single truth: investment scams are industrialising. They no longer rely on lone actors but on networks, infrastructure, and sophisticated social engineering.

Red Flags for Banks and E-Money Issuers

Financial institutions sit at the intersection of prevention. To stay ahead, they must look for red flags across transactions, customer behaviour, and KYC/CDD profiles.

1. Transaction-Level Indicators

  • Transfers to new beneficiaries described as “bond” or “investment” payments.
  • Repeated mid-value international transfers inconsistent with customer history.
  • Rapid pass-through of funds through personal or SME accounts.
  • Small initial transfers followed by large lump sums after “trust” is established.

2. KYC/CDD Risk Indicators

  • Beneficiary companies lacking investment licenses or regulator registrations.
  • Accounts controlled by individuals with no financial background receiving large investment-related flows.
  • Overlapping ownership across multiple “investment firms” with similar addresses or directors.

3. Customer Behaviour Red Flags

  • Elderly or affluent customers suddenly wiring large sums under urgency.
  • Customers unable to clearly explain the investment’s mechanics.
  • Reports of unsolicited investment opportunities delivered via email or social media.

Together, these signals create the scenarios compliance teams must be trained to detect.

Regulatory and Industry Response

ANZ’s quick warning reflects growing industry awareness, but the response must be collective.

  • ASIC and FMA: Both regulators maintain registers of licensed investments and regularly issue alerts. They stress that legitimate offers will always appear on official websites.
  • Global Coordination: Investment scams often cross borders. Victims in Australia and New Zealand may be wiring money to accounts in Southeast Asia. This makes regulatory cooperation across ASEAN and ANZ critical.
  • Consumer Education: Banks and regulators are doubling down on campaigns warning customers that if an investment looks too good to be true, it usually is.

Still, fraudsters adapt faster than awareness campaigns. Which is why technology-driven detection is essential.

How Tookitaki Strengthens Defences

Tookitaki’s solutions are designed for exactly these challenges — scams that evolve, spread, and cross borders.

1. AFC Ecosystem: Shared Intelligence

The AFC Ecosystem aggregates scenarios from global compliance experts, including typologies for investment scams, impersonation fraud, and mule networks. By sharing knowledge, institutions in Australia and New Zealand can learn from cases in the Philippines, Singapore, or beyond.

2. FinCense: Scenario-Driven Monitoring

FinCense transforms these scenarios into live detection. It can flag:

  • Victim-to-mule account flows tied to investment scams.
  • Patterns of layering through multiple personal accounts.
  • Transactions inconsistent with KYC profiles, such as pensioners wiring large “bond” payments.

3. AI Agents: Faster Investigations

Smart Disposition reduces noise by auto-summarising alerts, while FinMate acts as an AI copilot to link entities and uncover hidden relationships. Together, they help compliance teams act before scam proceeds vanish offshore.

4. The Trust Layer

Ultimately, Tookitaki provides the trust layer between institutions, customers, and regulators. By embedding collective intelligence into detection, banks and EMIs not only comply with AML rules but actively safeguard their reputations and customer trust.

Conclusion: Protecting Trust in the Age of Impersonation

The ANZ Premier Wealth impersonation scam shows that in today’s landscape, trust itself is under attack. Fraudsters no longer just exploit technical loopholes; they weaponise the credibility of established institutions to lure victims.

For banks and fintechs, this means vigilance cannot stop at transaction monitoring. It must extend to understanding scenarios, recognising behavioural red flags, and preparing for scams that look indistinguishable from legitimate offers.

For regulators, the challenge is to build stronger cross-border cooperation and accelerate detection frameworks that can keep pace with the industrialisation of fraud.

And for technology providers like Tookitaki, the mission is clear: to stay ahead of deception with intelligence that learns, adapts, and scales.

Because fake bonds may look convincing, but with the right defences, the real losses they cause can be prevented.

Fake Bonds, Real Losses: Unpacking the ANZ Premier Wealth Investment Scam
Blogs
12 Sep 2025
6 min
read

Flooded with Fraud: Unmasking the Money Trails in Philippine Infrastructure Projects

The Philippines has always lived with the threat of floods. Each typhoon season brings destruction, and the government has poured billions into flood control projects meant to shield vulnerable communities. But while citizens braced for rising waters, another kind of flood was quietly at work: a flood of fraud.

Investigations now reveal that massive chunks of the flood control budget never translated into levees, drainage systems, or protection for communities. Instead, they flowed into the hands of a handful of contractors, politicians, and middlemen.

Since 2012, just 15 contractors cornered nearly ₱100 billion in projects, roughly 20 percent of the total budget. Many projects were “ghosts,” existing only on paper. Meanwhile, luxury cars filled garages, mansions rose in gated villages, and political war chests swelled ahead of elections.

This is not simply corruption. It is a textbook case of money laundering, with ghost projects and inflated contracts acting as conduits for illicit enrichment. For banks, fintechs, and regulators, it is a flashing red signal that the financial system remains a key artery for laundering public funds.

The Anatomy of the Scandal

The Department of Public Works and Highways (DPWH) is tasked with executing infrastructure that keeps cities safe from rising waters. Yet over the past decade, its flood control program has morphed into a honey pot for collusion and fraud.

  • Ghost projects: Entire budgets released for dams, dikes, and drainage systems that were never completed or never built at all.
  • Overpriced contracts: Inflated project costs created buffers for skimming and fund diversion.
  • Kickbacks for campaigns: Portions of project budgets allegedly redirected to finance electoral campaigns, locking in loyalty between politicians and contractors.
  • Cartel behaviour: Fifteen contractors cornering nearly a fifth of the flood control budget, year after year, with suspiciously repeat awards.
  • Lavish lifestyles: Contractors flaunting their wealth through luxury cars, sprawling mansions, and overseas spending.

The human cost is chilling. While typhoon-prone communities remain flooded each year, taxpayer money meant for their protection bankrolls supercars instead of sandbags.

ChatGPT Image Sep 11, 2025, 01_08_50 PM

The Laundering Playbook Behind Ghost Projects

This scandal mirrors the familiar placement-layering-integration framework of money laundering, but applied to public funds.

  1. Placement: Ghost Projects as Entry Points
    Funds are injected into the system under the guise of legitimate project disbursements. With government contracts as a cover, illicit enrichment begins with official-looking payments.
  2. Layering: Overpricing, Subcontracting, and Round-Tripping
    Excess funds are disguised through inflated invoices, subcontractor arrangements, and consultancy contracts. Round-tripping, where money cycles through multiple accounts before returning to the same network, further conceals the origin.
  3. Integration: From Sandbags to Supercars
    Once disguised, the funds re-emerge in legitimate markets such as luxury cars, prime real estate, overseas tuition, or campaign expenses. At this stage, dirty money is fully cleaned and woven into political and economic life.

Globally, procurement-related laundering has been flagged repeatedly by the Financial Action Task Force (FATF). In fact, FATF’s 2023 mutual evaluation warned that the Philippines faces serious challenges in addressing public sector corruption risks. The flood control scandal is not just a local embarrassment; it risks pulling the country deeper into scrutiny by international watchdogs.

What Banks Must Watch

Banks sit at the centre of these laundering flows. Every contractor, subcontractor, or political beneficiary needs accounts to receive, move, and disguise illicit funds. This makes banks the first line of defence, and often the last checkpoint before illicit proceeds are fully integrated.

Transaction-Level Red Flags

  • Large and repeated deposits from government agencies into the same small group of contractors.
  • Transfers to shell subcontractors or consultancy firms with little to no delivery capacity.
  • Sudden spikes in cash withdrawals after receiving government disbursements.
  • Circular transactions between contractors and related parties, indicating round-tripping.
  • Luxury purchases such as cars, property, and overseas spending directly following government project inflows.
  • Campaign-linked transfers, with bursts of outgoing payments to political accounts during election seasons.

KYC/CDD Red Flags

  • Contractors with weak financial standing but billion-peso contracts.
  • Hidden ownership ties to politically exposed persons (PEPs).
  • Corporate overlap among multiple contractors, suggesting collusion.
  • Lack of verifiable track records in infrastructure delivery, yet repeated contract awards.

Cross-Border Concerns

Funds may also be siphoned abroad. Banks must scrutinise:

  • Remittances to offshore accounts labelled as “consultancy” or “procurement.”
  • Purchases of high-value overseas assets.
  • Trade-based laundering through manipulated import or export invoices for construction materials.

Banks must not only flag individual transactions but also connect the narrative across accounts, owners, and transaction patterns.

What BSP-Licensed E-Money Issuers Must Watch

The scandal also casts a spotlight on fintech players. BSP-licensed e-money issuers (EMIs) are increasingly part of laundering networks, especially when illicit funds need to be fragmented, hidden, or redirected.

Key risks include:

  • Wallet misuse for political finance, with illicit funds loaded into multiple wallets to bankroll campaigns.
  • Structuring, where large government disbursements are broken into smaller transfers to dodge reporting thresholds.
  • Proxy accounts, with employees or relatives of contractors opening multiple wallets to spread funds.
  • Layering via wallets, with e-money balances converted into bank transfers, prepaid cards, or even crypto exchanges.
  • Unusual bursts of wallet activity around elections or after government fund releases.

For EMIs, the challenge is to monitor not just high-value transactions but also suspicious transaction clusters, where multiple accounts show parallel spikes or transfers that defy normal spending behaviour.

How Tookitaki Strengthens Defences

Schemes like ghost projects thrive because they exploit systemic blind spots. Static rules cannot keep pace with evolving laundering tactics. This is where Tookitaki brings a sharper edge.

AFC Ecosystem: Collective Intelligence

With over 1,500 expert-contributed typologies, the AFC Ecosystem already covers procurement fraud, campaign finance laundering, and luxury asset misuse. These scenarios can be directly applied by Philippine institutions to detect anomalies tied to public fund diversion.

FinCense: Adaptive Detection

FinCense translates these scenarios into live detection rules. It can flag government-to-contractor payments followed by unusual subcontractor layering or sudden spikes in high-value asset spending. Its federated learning model ensures that detection improves continuously across the network.

AI Agents: Cutting Investigation Time

Smart Disposition reduces false positives with automated, contextual alert summaries, while FinMate acts as an AI copilot for investigators. Together, they help compliance teams trace suspicious flows faster, from government disbursements to the eventual luxury car purchase.

The Trust Layer for BSP Institutions

By embedding collective intelligence into everyday monitoring, Tookitaki becomes the trust layer between financial institutions and regulators. This helps BSP and the Anti-Money Laundering Council (AMLC) strengthen national defences against procurement-linked laundering.

Talk to an Expert

Conclusion: Beyond the Scandal

The flood control scandal is more than an exposé of wasted budgets. It is a stark reminder that public money, once stolen, does not vanish into thin air. It flows through the financial system, often right under the noses of compliance teams.

The typologies on display—ghost projects, contractor cartels, political kickbacks, and luxury laundering—are not unique to the Philippines. They are part of a global playbook of corruption-driven laundering. But in a country already under FATF scrutiny, the stakes are even higher.

For banks and EMIs, the call to action is urgent: strengthen detection, move beyond static rules, and collaborate across institutions. For regulators, it means demanding transparency, closing loopholes, and leveraging technology that learns and adapts in real time.

At Tookitaki, our role is to ensure institutions are not just reacting after scandals break but detecting patterns before they escalate. By unmasking money trails, enabling collaborative intelligence, and embedding AI-driven defences, we can prevent the next flood of fraud from drowning public trust.

Floods may be natural, but fraud floods are man-made. And unlike typhoons, this one is preventable.

Flooded with Fraud: Unmasking the Money Trails in Philippine Infrastructure Projects
Blogs
03 Sep 2025
7 min
read

How Initiatives Like AI Verify Make AI-Governance & Validation Protocols Integral to AI Deployment Strategy

Introduction: Why Governance-First AI is Rewriting the Financial Crime Playbook

This article is the second instalment in our series, Governance-First AI Strategy: The Future of Financial Crime Detection. The series examines how financial institutions can move beyond box-ticking compliance and embrace AI systems that are transparent, trustworthy, and genuinely effective against crime.

If you missed Part 1 — The AI Governance Crisis: How Compliance-First Thinking Undermines Both Innovation and Compliance — we recommend it as a pre-read. There, we explored how today’s compliance-heavy frameworks have created a paradox: soaring costs, mounting false positives, and declining effectiveness in tackling sophisticated financial crime.

In this second part, we shift from diagnosing the crisis to highlighting solutions. We look at how governance-first AI is being operationalised through initiatives like Singapore’s AI Verify program, which is setting global benchmarks for validation, accountability, and continuous trust in financial crime detection.

The Governance Gap: Moving Beyond Checkbox Compliance

Traditionally, many financial institutions have seen governance as a final-layer exercise: a set of boxes to tick just before launching a new AML system or onboarding a new AI solution. But today’s complex, AI-driven systems have outpaced this outdated approach. Here’s why this gap is so dangerous:

The Risks of Outdated Governance

  • Operational Failure: Financial institutions are reporting false positive alert rates reaching 90% or higher. Analysts spend valuable time on non-issues, while genuine risks can slip through unseen, creating an operational black hole.
  • Regulatory Exposure: Regulators are increasingly sceptical of black-box AI systems that cannot be explained or audited. This raises the risk of costly penalties, strict remediation orders, and reputational damage.
  • Stalled Innovation: The fear of non-compliance can make organisations hesitant to adopt even the most promising AI innovations, worried they will face issues during audits.

Towards Living Governance

True governance means embedding transparency, validation, and accountability across the entire AI lifecycle. This is not a static report, but a dynamic, ongoing protocol that evolves as threats and opportunities do.

ChatGPT Image Sep 3, 2025, 01_18_24 PM

AI Verify: Singapore’s Blueprint for Independent AI Validation

Enter AI Verify: Singapore’s response to the governance challenge, and a model now being emulated worldwide. Developed by the IMDA and AI Verify Foundation, this pioneering program aims to transform governance and validation from afterthoughts into core design principles for any AI system, especially those managing financial crime risk.

Key Features of AI Verify

  • Rigorous, Scenario-Based Testing: Every AI model is evaluated against 400+ real-world financial crime detection scenarios, ensuring that outputs perform accurately across the range of complexities institutions actually face.
  • Multi-language and Cross-Border Application: With testing in both English and Mandarin, AI Verify anticipates the needs of global financial institutions with diverse customer bases and regulatory environments.
  • Zero Tolerance for Hallucinations: The program enforces strict protocols to ensure every AI-generated output is grounded in verifiable, auditable facts. This sharply reduces the risk of hallucinations, a key regulatory concern.
  • Continuous Compliance Assurance: Validation is not a single event. Ongoing monitoring, reporting, and built-in alerts ensure the AI adapts to new criminal typologies and evolving regulatory expectations.

Validation in Action: The Tookitaki Case Study

Tookitaki became the first RegTech company to achieve independent validation under Singapore’s AI Verify program, setting a new industry benchmark for governance-first AI solutions.

  • Accuracy Across Complexity: Our AI systems were validated against an extensive suite of real-world AML scenarios, consistently delivering precise, actionable outcomes in both English and Mandarin.
  • No Hallucinations: With guardrails in place, every AI-generated narrative was rigorously checked for factual soundness and traceability. Investigators and regulators were able to audit the reasoning behind each alert, turning AI from a “black box” into a transparent partner.
  • Compliance, Built-In: Stringent regulatory, privacy, and security requirements were checked throughout the process, ensuring our systems could not only pass today’s audits but also stay ahead of tomorrow’s standards.
  • Strategic Trust: As recognised by media coverage in The Straits Times, Tookitaki’s independent validation became a source of trust for clients, regulators, and business partners, transforming governance into a strategic advantage.

Continuous Validation: Governance as Daily Operational Advantage

What sets AI Verify, and governance-first models more broadly, apart is the principle of continuous validation:

  • Pre-deployment: Before launch, every model is stress-tested for robustness, fairness, and regulatory fit in a controlled, simulated real-world setting.
  • Post-deployment: Continuous monitoring ensures that as new fraud threats and compliance rules arise, the AI adapts immediately, preventing operational surprises and keeping regulator confidence high.

This approach lets financial institutions move from a reactive, firefighting mentality to a proactive, resilient operating style.

The Strategic Payoff: Governance as a Differentiator

What is the true value of independent, embedded validation?

  • Faster, Safer Innovation: Launches of new AI models become quicker and less risky, since validation is built in, not tacked on at the end.
  • Operational Efficiency: With fewer false positives and more explainable decisions, investigative teams can focus energy where it matters most: rooting out real financial crime.
  • Market Leadership: Governance-first adopters signal to clients, partners, and regulators that they take trust, transparency, and responsibility seriously, building long-term advantages in reputation and readiness.
Talk to an Expert

Conclusion: Tomorrow’s AI, Built on Governance

As we highlighted in Part 1, compliance-first frameworks have proven costly and ineffective, leaving financial institutions trapped in a cycle of escalating spend and diminishing returns. AI Verify demonstrates what a governance-first approach looks like in practice: validation, accountability, and transparency built directly into the design of AI systems.

For Tookitaki, achieving independent validation under AI Verify was not simply a compliance milestone. It was evidence that governance-first AI can deliver measurable trust, precision, and operational advantage. By embedding continuous validation, institutions can move from reactive firefighting to proactive resilience, strengthening both regulatory confidence and market reputation.

Key Takeaways from Part 2:

  1. Governance-first AI shifts the conversation from “being compliant” to “being trustworthy by design.”
  2. Continuous validation ensures models evolve with emerging financial crime typologies and regulatory expectations.
  3. Independent validation transforms governance from a cost centre into a strategic differentiator.

What’s Next in the Series

In Part 3 of our series, Governance-First AI Strategy: The Future of Financial Crime Detection, we will explore one of the most pressing risks in deploying AI for compliance: AI hallucinations. When models generate misleading or fabricated outputs, trust breaks down, both with regulators and within institutions.

We will examine why hallucinations are such a critical challenge in financial crime detection and how governance-first safeguards, including Tookitaki’s own controls, are designed to eliminate these risks and make every AI-driven decision auditable, transparent, and actionable.

Stay tuned.

How Initiatives Like AI Verify Make AI-Governance & Validation Protocols Integral to AI Deployment Strategy