Compliance Hub

JMLSG Guidance and Its Importance in the UK AML Regime

Site Logo
Tookitaki
16 Dec 2020
7 min
read

JMLSG stands for the Joint Money Laundering Steering Group. It’s a multi-disciplinary committee which was created to provide assistance in interpreting UK Money Laundering Regulations. The private-sector body regularly publishes guidance notes, known as JMLSG guidance, on the UK money laundering regulations.

The JMLSG guidance plays an important role in helping financial institutions and other key industries to ensure that they comply with the UK’s anti-money laundering and counter-terrorist financing (AML/CTF) regulations. In this article, we will discuss JMLSG, the JMLSG guidance and its role in the UK AML regime.

 

Who Are the Members of JMLSG?

JMLSG consists of members from leading UK trade associations who are part of the financial service industry. It also includes representatives from the Building Societies Association, the British Bankers’ Association, and the Association of British Insurers. The following are the current members of JMLSG, according to their official website.

  • Association for Financial Markets in Europe (AFME)
  • The Association of British Credit Unions Limited (ABCUL)
  • Association of British Insurers (ABI)
  • Association of Foreign Banks (AFB)
  • British Venture Capital Association (BVCA)
  • Building Societies Association (BSA)
  • Electronic Money Association (EMA)
  • European Venues and Intermediaries Association (EVIA)
  • Finance & Leasing Association (FLA)
  • The Investment Association (IA)
  • Loan Market Association (LMA)
  • The Personal Investment Management and Financial Advice Association (PIMFA)
  • The Investing and Savings Alliance (TISA)
  • UK Finance (UKF)

 

What Is the Aim of JMLSG?

The JMLSG aims to assist financial institutions in the UK to adopt better practices in the prevention of money laundering and terrorist financing. Its guidance notes are to clarify the country’s AML regulations and to guide financial institutions on the implementation of proper AML processes and procedures.

 

What is the JMLSG Guidance?

The JMLSG has set forth AML guidelines to help assist the financial sector. These guidelines are neither legally binding nor punishable at an offence. However, they have HM Treasury’s approval. The JMLSG guidance helps financial institutions (FIs) to develop a compliance programme with policies and procedures that are fit to the organisation’s needs.

The guidance by JMLSG determines the necessary requirements that the financial entities need in order to detect, investigate, and prevent money laundering and terrorist financing. It allows the FIs to apply the required regulations based on their personal experience, products and services, clients and transactions.

Although it’s not compulsory for FIs to follow the JMLSG guidance, the adoption, however, is a sign of having good AML compliance measures. The guidance is not over-prescriptive but provides a base from which an FI’s management can develop tailored policies and procedures that are appropriate for their business. It remains the responsibility of an FI to make its own judgement on individual cases, on a risk-based approach.

The purpose of the JMLSG guidance is to:

  • Outline the legal and regulatory framework for anti-money laundering/countering terrorist financing (AML/CTF) requirements and systems across the financial services sector
  • Interpret the requirements of the relevant law and regulations, and how they may be implemented in practice
  • Indicate good industry practice in AML/CTF procedures through a proportionate, risk-based approach
  • Assist firms in designing and implementing the systems and controls necessary to mitigate the risks of the firm being used in connection with money laundering and the financing of terrorism.

Read More: Financial Conduct Authority: Money Laundering in The UK

The Current JMLSG Guidance

The current JMLSG guidance is available in three parts:

  1. Generic guidance for the UK financial sector,
  2. Sectoral guidance
  3. Specialist guidance.

We give a quick rundown of the general guidance's content here.

 The Responsibility of Senior Management

According to the JMLSG, senior management in an FI has a responsibility to ensure that its policies, controls and procedures are appropriately designed, implemented and effectively operated.

The senior management needs to ensure that the Financial Conduct Authority makes written policies and procedures available to the FI’s employees. It is also the responsibility of management to consider any risk factors relating to clients, jurisdictions, the geographic location of the institute, transactions, products, and services, and so on.

The senior management should be engaged at every step of the decision-making processes while taking ownership of the risk-based approach. The management will be responsible in case the risk-based approach is inadequate.

Internal Controls

The JMLSG provides guidance on the internal controls that will help FIs meet their obligations in respect to the prevention of money laundering and terrorist financing.

It is recommended that FIs appoint a member of their board (or comparable management body) or senior management as the officer in charge of the firm's money laundering compliance.They also need to carry out screening of relevant employees and agents appointed by the firm, both before they are recruited, and at regular intervals during the course of their employment and establish an independent internal audit function.

The Nominated Officers/MLROs

FIs must appoint a Nominated Officer or Money Laundering Reporting Officer (MLRO) to ensure that the firm maintains compliance with the Financial Conduct Authority’s (FCA) regulatory systems.

The firm’s nominated officer will monitor the routine functions and money laundering policies. They will also give more information on any questioning related to the FCA or help in understanding the UK’s legislation better.

A Risk-based Approach

The risk-based approach is endorsed by the FATF recommendations 1 and 10 and the Basel Paper among others.

The JMLSG suggests the following actions to ensure a risk-based approach.

    • Carry out a formal, and regular, money laundering/terrorist financing risk assessment, including market changes, and changes in products, customers and the wider environment
    • Ensure internal policies, controls and procedures, including staff awareness, adequately reflect the risk assessment
    • Ensure customer identification and acceptance procedures reflect the risk characteristics of customers
    • Ensure arrangements for monitoring systems and controls are robust, and reflect the risk characteristics of customers

Customer Due Diligence

The group lists out the following Customer Due Diligence (CDD) measures for FIs in its guidance.

    • Must carry out prescribed CDD measures for all customers not covered by exemptions
    • Must have systems to deal with identification issues in relation to those who cannot produce the standard evidence
    • Must take a risk-based approach when applying enhanced due diligence to take account of the greater potential for money laundering in higher-risk cases, specifically with respect of PEPs and correspondent relationships
    • Some persons/entities must not be dealt with
    • Must have specific policies about the financially (and socially) excluded
    • If satisfactory evidence of identity is not obtained, the business relationship must not proceed further
    • Must have some system for keeping customer information up to date

Suspicious Activities, Reporting and Data Protection

The JMLSG suggests the following actions:

    • Enquiries made in respect to disclosures must be documented
    • The reasons why a Suspicious Activity Report (SAR) was, or was not, submitted should be recorded
    • Any communications made with or received from the authorities, including the NCA, in relation to a SAR should be maintained on file
    • In cases where advance notice of a transaction or of arrangements is given, the need for prior consent before it is allowed to proceed should be considered

Staff Awareness, Training and Alertness

The JMLSG suggests the following actions:

    • Provide appropriate training to make relevant employees aware of money laundering and terrorist financing issues, including how these crimes operate and how they might take place through the firm
    • Ensure that relevant employees are provided with information on, and understand, the legal position of the firm and of individual members of staff, and of changes to these legal positions
    • Consider providing relevant employees with case studies and examples related to the firm’s business
    • Train relevant employees in how to operate a risk-based approach to AML/CTF

Record Keeping

According to the JMLSG, FIs have the following core obligations:

    • Firms must retain copies of, or references to, the evidence they obtained of a customer’s identity and details of customer transactions for five years after the end of the customer relationship or five years after the completion of an occasional transaction
    • Firms should retain details of actions taken in respect of internal and external suspicion reports and details of information considered by the nominated officer in respect of an internal report where no external report is made
    • Firms must delete any personal data relating to CDD and client transactions in accordance with Regulation 40

 

How Can Tookitaki Help Financial Institutions in the UK?

As a fast-growing Regtech company, Tookitaki has developed an end-to-end AML compliance platform called the Anti-Money Laundering Suite (AMLS). It offers multiple solutions catering to the core AML activities such as transaction monitoring, name screening, transaction screening and customer risk scoring. Powered by advanced machine learning, AMLS addresses the market needs and provides an effective and scalable AML compliance solution.

To learn more about our AML solution and its unique features that help financial institutions to enhance their risk-based AML compliance programmes, book a meeting with one of our experts today. 

By submitting the form, you agree that your personal data will be processed to provide the requested content (and for the purposes you agreed to above) in accordance with the Privacy Notice

success icon

We’ve received your details and our team will be in touch shortly.

In the meantime, explore how Tookitaki is transforming financial crime prevention.
Learn More About Us
Oops! Something went wrong while submitting the form.

Ready to Streamline Your Anti-Financial Crime Compliance?

Our Thought Leadership Guides

Blogs
09 Dec 2025
6 min
read

Beyond the Basics: AML Software Features That Matter

Fighting financial crime takes more than rules — it takes intelligence, adaptability, and technology that sees around corners.

As regulators like MAS sharpen expectations and financial criminals grow bolder, traditional compliance tools can’t keep up. In this blog, we break down the AML software features that actually matter — the ones that make compliance teams faster, smarter, and more effective.

Talk to an Expert

Why AML Software Features Need an Upgrade

Legacy systems, built on static rules and siloed data, are struggling to cope with today’s complex threats. Whether it’s mule account networks, deepfake scams, or layering through fintech apps — financial institutions need features that go beyond detection.

The best AML software today must:

  • Help reduce false positives
  • Enable smart investigations
  • Align with global and local regulations
  • Detect new and evolving typologies
  • Scale with business and regulatory complexity

Let’s explore what that looks like in practice.

1. Dynamic Rule Engines with Explainable AI

Static rules may catch known patterns but they can’t adapt. Today’s AML systems need hybrid engines — combining:

  • Transparent rule logic (for control and auditability)
  • Adaptive AI (to learn from emerging patterns)
  • Explainable outputs (for regulatory trust)

This hybrid approach lets teams retain oversight while benefiting from intelligence.

2. Scenario-Based Detection

One of the most powerful AML software features is scenario-based detection.

Rather than relying on single-rule violations, advanced systems simulate real-world money laundering behaviours. This includes:

  • Round-tripping through shell companies
  • Rapid layering via fintech wallets
  • Smurfing in high-risk corridors

Tookitaki’s FinCense, for example, includes 1200+ such scenarios from its AFC Ecosystem.

3. AI-Driven Alert Narration

Investigators spend hours writing STRs and case notes. Modern software auto-generates these using natural language processing.

AI-generated alert narratives:

  • Improve consistency
  • Save time
  • Help meet MAS reporting standards
  • Reduce compliance fatigue

Look for tools that allow editing, tagging, and automated submission workflows.

4. Federated Learning Models

Traditional AI models require centralised data. That’s a challenge for privacy-focused institutions.

Federated learning allows AML software to:

  • Learn from a wide range of typologies
  • Retain data privacy and sovereignty
  • Continuously improve across institutions

This means smarter detection without compromising compliance.

5. Integrated Fraud & AML Risk View

Fraud and AML teams often work in silos. But money launderers don’t respect those boundaries.

The best AML software features allow shared risk views across:

  • Transactions
  • Devices and IPs
  • Customer identity data
  • Behavioural anomalies

Integrated insights mean faster responses and lower risk exposure.

ChatGPT Image Dec 9, 2025, 12_46_44 PM

6. Graph-Based Network Detection

One alert is never just one alert.

Criminal networks often involve multiple accounts, shell firms, and layered payments. Modern AML systems should provide:

  • Visual network graphs
  • Linked-party analysis
  • Proximity risk scores

This lets analysts uncover the full picture and prioritise high-risk nodes.

7. Case Management with Embedded Intelligence

Manual case management slows everything down. Today’s best systems embed smart logic within workflows:

  • Pre-prioritised alert queues
  • Case suggestions and clustering
  • Investigation copilot support

This ensures compliance teams can move fast — without sacrificing accuracy.

8. Modular & API-First Architecture

One size doesn’t fit all. Top-tier AML software should be modular and easy to integrate:

  • Open APIs for screening, monitoring, scoring
  • Support for custom workflows
  • Cloud-native deployment (Kubernetes, containerised)

This gives financial institutions the flexibility to scale and innovate.

9. Regulatory-Ready Reporting & Dashboards

Singapore’s MAS expects clear audit trails and proactive reporting. AML platforms should offer:

  • Real-time dashboards
  • Threshold tuning with audit logs
  • Compliance-ready reports for internal and regulatory use

Tools like FinCense also support local AI validation via AI Verify.

10. Community-Driven Intelligence

One of the most underrated features is shared learning.

The AFC Ecosystem, for instance, allows financial institutions to:

  • Share typologies anonymously
  • Access expert-contributed red flags
  • Detect fast-evolving typologies seen across Asia-Pacific

This collective intelligence is a powerful edge in the AML battle.

Bonus: GenAI Copilots

From summarising cases to suggesting next actions, GenAI copilots are transforming how compliance teams operate.

These features:

  • Speed up investigations
  • Reduce training time for junior analysts
  • Boost consistency across teams

The Tookitaki Advantage

Tookitaki’s FinCense platform offers all of the above — and more. Designed for real-world complexity, its standout AML software features include:

  • Auto Narration for fast, MAS-aligned investigations
  • Federated Learning through the AFC Ecosystem
  • Typology Simulation Mode to test new scenarios
  • Local LLM Copilot to assist investigators in real time

Adopted by top banks and fintechs across Singapore and Southeast Asia, FinCense is setting the benchmark for future-ready AML compliance.

Final Word

As money laundering techniques evolve, AML software features must follow suit. In 2025, that means moving beyond basic detection — into a world of AI, shared intelligence, and smarter investigations.

Whether you’re evaluating solutions or upgrading your current stack, use this list as your blueprint for success.

Beyond the Basics: AML Software Features That Matter
Blogs
09 Dec 2025
6 min
read

Real Time Risk: The Evolution of Suspicious Transaction Monitoring in Australia

Suspicious transaction monitoring is entering a new era in Australia as real time payments, rising scams, and advanced AI reshape financial crime detection.

Introduction

Australia’s financial landscape is undergoing a profound transformation. Digital adoption continues to accelerate, the New Payments Platform has reset the speed of money movement, and criminals have become far more agile, organised, and technology enabled. At the same time, AUSTRAC and APRA have raised expectations around governance, auditability, operational resilience, and system intelligence.

In this environment, suspicious transaction monitoring has become one of the most strategic capabilities across Australian banks, mutuals, fintechs, and payments providers. What was once a back office workflow is now a real time, intelligence driven function that directly impacts customer protection, regulatory confidence, fraud prevention, and institutional reputation.

This blog examines the future of suspicious transaction monitoring in Australia. It explores how financial crime is evolving, what regulators expect, how technology is changing detection, and what institutions must build to stay ahead in a fast moving, real time world.

Talk to an Expert

Part 1: Why Suspicious Transaction Monitoring Matters More Than Ever

Several forces have reshaped the role of suspicious monitoring across Australian institutions.

1. Real time payments require real time detection

NPP has changed everything. Money now leaves an account instantly, which means criminals exploit speed for rapid layering and dispersal. Batch based monitoring systems struggle to keep up, and traditional approaches to alert generation are no longer sufficient.

2. Scams are now a major driver of money laundering

Unlike traditional laundering through shell companies or cash based structuring, modern laundering often begins with a manipulated victim.
Investment scams, impersonation scams, romance scams, and remote access fraud have all contributed to victims unknowingly initiating transactions that flow into sophisticated laundering networks.

Suspicious monitoring must therefore detect behavioural anomalies, not just transactional thresholds.

3. Mule networks are more organised and digitally recruited

Criminal groups use social media, messaging platforms, and gig economy job ads to recruit mules. Many of these participants do not understand that their accounts are being used for crime. Monitoring systems must detect the movement of funds through coordinated networks rather than treating each account in isolation.

4. AUSTRAC expectations for quality and clarity are rising

AUSTRAC expects systems that:

  • Detect meaningful risks
  • Provide explainable alert reasons
  • Support timely escalation
  • Enable structured, clear evidence trails
  • Produce high quality SMRs

Suspicious monitoring systems that produce volume without intelligence fall short of these expectations.

5. Operational pressure is increasing

AML teams face rising alert volumes and tighter deadlines while managing complex typologies and customer impact. Monitoring must reduce workload, not create additional burden.

These factors have pushed institutions toward a more intelligent, real time model of suspicious transaction monitoring.

Part 2: The Evolution of Suspicious Transaction Monitoring

Suspicious monitoring has evolved through four key phases in Australia.

Phase 1: Rules based detection

Legacy systems relied on static thresholds, such as sudden large deposits or unusual cash activity. These systems provided basic detection but were easily bypassed.

Phase 2: Risk scoring and segmentation

Institutions began using weighted scoring models to prioritise alerts and segment customers by risk. This improved triage but remained limited by rigid logic.

Phase 3: Behaviour driven monitoring

Monitoring systems began analysing customer behaviour to detect anomalies. Instead of only looking for rule breaches, systems assessed:

  • Deviations from normal spending
  • New beneficiary patterns
  • Unusual payment timing
  • Velocity changes
  • Device and channel inconsistencies

This represented a major uplift in intelligence.

Phase 4: Agentic AI and network intelligence

This is the phase Australia is entering today.
Monitoring systems now use:

  • Machine learning to detect subtle anomalies
  • Entity resolution to understand relationships between accounts
  • Network graphs to flag coordinated activity
  • Large language models to support investigations
  • Agentic AI to assist analysts and accelerate insight generation

This shift allows monitoring systems to interpret complex criminal behaviour that static rules cannot detect.

Part 3: What Suspicious Transaction Monitoring Will Look Like in the Future

Australia is moving toward a model of suspicious monitoring defined by three transformative capabilities.

1. Real time intelligence for real time payments

Real time settlements require detection engines that can:

  • Score transactions instantly
  • Enrich them with behavioural data
  • Assess beneficiary risk
  • Detect mule patterns
  • Escalate only high value alerts

Institutions that continue relying on batch systems face significant blind spots.

2. Behaviour first monitoring instead of rules first monitoring

Criminals study rules. They adjust behaviour to avoid triggering thresholds.
Behaviour driven monitoring understands intent. It identifies the subtle indicators that reflect risk, including:

  • Deviations from typical spending rhythm
  • Anomalous beneficiary additions
  • Sudden frequency spikes
  • Transfers inconsistent with life events
  • Shifts in interaction patterns

These indicators uncover risk before it becomes visible in traditional data fields.

3. Network intelligence that reveals hidden relationships

Money laundering rarely happens through isolated accounts.
Networks of mules, intermediaries, shell companies, and victims play a role.
Next generation monitoring systems will identify:

  • Suspicious clusters of accounts
  • Multi step movement chains
  • Cross customer behavioural synchronisation
  • Related accounts acting in sequence
  • Beneficiary networks used repeatedly for layering

This is essential for detecting modern criminal operations.

ChatGPT Image Dec 9, 2025, 12_14_24 PM

Part 4: What AUSTRAC and APRA Expect from Suspicious Monitoring

Regulators increasingly view suspicious monitoring as a core risk management function rather than a compliance reporting mechanism. The expectations are clear.

1. Explainability

Systems must show why a transaction was flagged.
Opaque alerts weaken compliance outcomes and create challenges during audits or supervisory reviews.

2. Timeliness and responsiveness

Institutions must detect and escalate risk at a pace that matches the real time nature of payments.

3. Reduced noise and improved alert quality

A program that produces excessive false positives is considered ineffective and may trigger regulatory scrutiny.

4. High quality SMRs

SMRs should be clear, structured, and supported by evidence. Monitoring systems influence the quality of reporting downstream.

5. Resilience and strong third party governance

Under APRA CPS 230, suspicious monitoring systems must demonstrate stability, recoverability, and well managed vendor oversight.

These expectations shape how technology must evolve to remain compliant.

Part 5: The Operational Pain Points Institutions Must Solve

Across Australia, institutions consistently experience challenges in suspicious monitoring.

1. Excessive false positives

Manual rules often generate noise and overwhelm analysts.

2. Slow alert resolution

If case management systems are fragmented or manual, analysts cannot keep pace.

3. Siloed information

Onboarding data, behavioural data, and transactional information often live in different systems, limiting contextual understanding.

4. Limited visibility into networks

Traditional monitoring highlights individual anomalies but struggles to detect coordinated networks.

Part 6: How Agentic AI Is Transforming Suspicious Transaction Monitoring

Agentic AI is emerging as one of the most important capabilities for future monitoring in Australia.
It supports analysts, accelerates investigations, and enhances detection logic.

1. Faster triage with contextual summaries

AI agents can summarise alerts and highlight key anomalies, helping investigators focus on what matters.

2. Automated enrichment

Agentic AI can gather relevant information across systems and present it in a coherent format.

3. Enhanced typology detection

Machine learning models can detect early stage patterns of scams, mule activity, and layering.

4. Support for case narratives

Analysts often spend significant time writing narratives. AI assistance ensures consistent, high quality explanations.

5. Better SMR preparation

Generative AI can support analysts by helping structure information for reporting while ensuring clarity and accuracy.

Part 7: What Strong Suspicious Monitoring Programs Will Look Like

Institutions that excel in suspicious monitoring will adopt five key principles.

1. Intelligence driven detection

Rules alone are insufficient. Behavioural analytics and network intelligence define the future.

2. Unified system architecture

Detection, investigation, reporting, and risk scoring must flow seamlessly.

3. Real time capability

Monitoring must align with rapid settlement cycles.

4. Operational excellence

Analysts must be supported by workflow automation and structured evidence management.

5. Continuous evolution

Typologies shift quickly. Monitoring systems must learn and adapt throughout the year.

Part 8: How Tookitaki Supports the Future of Suspicious Monitoring in Australia

Tookitaki’s FinCense platform aligns with the future direction of suspicious transaction monitoring by offering:

  • Behaviourally intelligent detection tailored to local patterns
  • Real time analytics suitable for NPP
  • Explainable outputs that support AUSTRAC clarity expectations
  • Strong, investigator friendly case management
  • Intelligent assistance that helps teams work faster and produce clearer outcomes
  • Scalability suitable for institutions of different sizes, including community owned banks such as Regional Australia Bank

The focus is on building intelligence, consistency, clarity, and resilience into every stage of the suspicious monitoring lifecycle.

Conclusion

Suspicious transaction monitoring in Australia is undergoing a major shift. Real time payments, rising scam activity, complex criminal networks, and higher regulatory expectations have created a new operating environment. Institutions can no longer rely on rule based, batch oriented monitoring systems that were designed for slower, simpler financial ecosystems.

The future belongs to programs that harness behavioural analytics, real time intelligence, network awareness, and Agentic AI. These capabilities strengthen compliance, protect customers, and reduce operational burden. They also support institutions in building long term resilience in an increasingly complex financial landscape.

Suspicious monitoring is no longer about watching transactions.
It is about understanding behaviour, recognising risk early, and acting with speed.

Australian institutions that embrace this shift will be best positioned to stay ahead of financial crime.

Real Time Risk: The Evolution of Suspicious Transaction Monitoring in Australia
Blogs
04 Dec 2025
6 min
read

AML Software Vendors in Australia: Mapping the Top 10 Leaders Shaping Modern Compliance

Australia’s financial system is changing fast, and a new class of AML software vendors is defining what strong compliance looks like today.

Introduction

AML has shifted from a quiet back-office function into one of the most strategic capabilities in Australian banking. Real time payments, rising scam activity, cross-border finance, and regulatory expectations from AUSTRAC and APRA have pushed institutions to rethink their entire approach to financial crime detection.

As a result, the market for AML technology in Australia has never been more active. Banks, fintechs, credit unions, remitters, and payment platforms are all searching for software that can detect modern risks, support high velocity transactions, reduce false positives, and provide strong governance.

But with dozens of vendors claiming to be market leaders, which ones actually matter?
Who has real customers in Australia?
Who has mature AML technology rather than adjacent fraud or identity tools?
And which vendors are shaping the future of AML in the region?

This guide cuts through the hype and highlights the Top 10 AML Software Vendors in Australia, based on capability, market relevance, AML depth, and adoption across banks and regulated entities.

It is not a ranking of marketing budgets.
It is a reflection of genuine influence in Australia’s AML landscape.

Talk to an Expert

Why Choosing the Right AML Vendor Matters More Than Ever

Before diving into the vendors, it is worth understanding why Australian institutions are updating AML systems at an accelerating pace.

1. The rise of real time payments

NPP has collapsed the detection window from hours to seconds. AML technology must keep up.

2. Scam driven money laundering

Victims often become unwitting mules. This has created AML blind spots.

3. Increasing AUSTRAC expectations

AUSTRAC now evaluates systems on clarity, timeliness, explainability, and operational consistency.

4. APRA’s CPS 230 requirements

Banks must demonstrate resilience, vendor governance, and continuity across critical systems.

5. Cost and fatigue from false positives

AML teams are under pressure to work faster and smarter without expanding headcount.

The vendors below are shaping how Australian institutions respond to these pressures.

The Top 10 AML Software Vendors in Australia

Each vendor on this list plays a meaningful role in Australia’s AML ecosystem. Some are enterprise scale platforms used by large banks. Others are modern AI driven systems used by digital banks, remitters, and fintechs. Together, they represent the technology stack shaping AML in the region.

1. Tookitaki

Tookitaki has gained strong traction across Asia Pacific and has an expanding presence in Australia, including community owned institutions such as Regional Australia Bank.

The FinCense platform is built on behavioural intelligence, explainable AI, strong case management, and collaborative intelligence. It is well suited for institutions seeking modern AML capabilities that align with real time payments and evolving typologies. Tookitaki focuses heavily on reducing noise, improving risk detection quality, and offering transparent decisioning for AUSTRAC.

Why it matters in Australia

  • Strong localisation for Australian payment behaviour
  • Intelligent detection aligned with modern typologies
  • Detailed explainability supporting AUSTRAC expectations
  • Scalable for both large and regional institutions

2. NICE Actimize

NICE Actimize is one of the longest standing and most widely deployed enterprise AML platforms globally. Large banks often shortlist Actimize when evaluating AML suites for high volume environments.

The platform covers screening, transaction monitoring, sanctions, fraud, and case management, with strong configurability and a long track record in operational resilience.

Why it matters in Australia

  • Trusted by major banks
  • Large scale capability for high transaction volumes
  • Comprehensive module coverage

3. Oracle Financial Services AML

Oracle’s AML suite is a dominant choice for complex, multi entity institutions that require deep analytics, broad data integration, and mature workflows. Its strengths are in transaction monitoring, model governance, watchlist management, and regulatory reporting.

Why it matters in Australia

  • Strong for enterprise banks
  • High configurability
  • Integrated data ecosystem for risk

4. FICO TONBELLER

FICO TONBELLER’s Sirion platform is known for its combination of rules based and model based detection. Institutions value the configurable nature of the platform and its strengths in sanctions screening and transaction monitoring.

Why it matters in Australia

  • Established across APAC
  • Reliable transaction monitoring engine
  • Proven governance features

5. SAS Anti Money Laundering

SAS AML is known for its analytics strength and strong detection modelling. Institutions requiring advanced statistical capabilities often choose SAS for its predictive risk scoring and data depth.

Why it matters in Australia

  • Strong analytical capabilities
  • Suitable for high data maturity banks
  • Broad financial crime suite

6. BAE Systems NetReveal

NetReveal is designed for complex financial crime environments where network relationships and entity linkages matter. Its biggest strength is its network analysis and ability to uncover hidden relationships between customers, accounts, and transactions.

Why it matters in Australia

  • Strong graph analysis
  • Effective for detecting mule networks
  • Used by large financial institutions globally

7. Fenergo

Fenergo is best known for its client lifecycle management technology, but it has become an important AML vendor due to its onboarding, KYC, regulatory workflow, and case management capabilities.

It is not a transaction monitoring vendor, but its KYC depth makes it relevant in AML vendor evaluations.

Why it matters in Australia

  • Used by global Australian banks
  • Strong CLM and onboarding controls
  • Regulatory case workflow capability

8. ComplyAdvantage

ComplyAdvantage is popular among fintechs, payment companies, and remitters due to its API first design, real time screening API, and modern transaction monitoring modules.

It is fast, flexible, and suited to high growth digital businesses.

Why it matters in Australia

  • Ideal for fintechs and modern digital banks
  • Up to date screening datasets
  • Developer friendly

9. Napier AI

Napier AI is growing quickly across APAC and Australia, offering a modular AML suite with mid market appeal. Institutions value its ease of configuration and practical user experience.

Why it matters in Australia

  • Serving several APAC institutions
  • Modern SaaS architecture
  • Clear interface for investigators

10. LexisNexis Risk Solutions

LexisNexis, through its FircoSoft screening engine, is one of the most trusted vendors globally for sanctions, PEP, and adverse media screening. It is widely adopted across Australian banks and payment providers.

Why it matters in Australia

  • Industry standard screening engine
  • Trusted by banks worldwide
  • Strong data and risk scoring capabilities
ChatGPT Image Dec 3, 2025, 04_43_57 PM

What This Vendor Landscape Tells Us About Australia’s AML Market

After reviewing the top ten vendors, three patterns become clear.

Pattern 1: Banks want intelligence, not just alerts

Vendors with strong behavioural analytics and explainability capabilities are gaining the most traction. Australian institutions want systems that detect real risk, not systems that produce endless noise.

Pattern 2: Case management is becoming a differentiator

Detection matters, but investigation experience matters more. Vendors offering advanced case management, automated enrichment, and clear narratives stand out.

Pattern 3: Mid market vendors are growing as the ecosystem expands

Australia’s regulated population includes more than major banks. Payment companies, remitters, foreign subsidiaries, and fintechs require fit for purpose AML systems. This has boosted adoption of modern cloud native vendors.

How to Choose the Right AML Vendor

Buying AML software is not about selecting the biggest vendor or the one with the most features. It involves evaluating five critical dimensions.

1. Fit for the institution’s size and data maturity

A community bank has different needs from a global institution.

2. Localisation to Australian typologies

NPP patterns, scam victim indicators, and local naming conventions matter.

3. Explainability and auditability

Regulators expect clarity and traceability.

4. Real time performance

Instant payments require instant detection.

5. Operational efficiency

Teams must handle more alerts with the same headcount.

Conclusion

Australia’s AML landscape is entering a new era.
The vendors shaping this space are those that combine intelligence, speed, explainability, and strong operational frameworks.

The ten vendors highlighted here represent the platforms that are meaningfully influencing Australian AML maturity. From enterprise platforms like NICE Actimize and Oracle to fast moving AI driven systems like Tookitaki and Napier, the market is more dynamic than ever.

Choosing the right vendor is no longer a technology decision.
It is a strategic decision that affects customer trust, regulatory confidence, operational resilience, and long term financial crime capability.

The institutions that choose thoughtfully will be best positioned to navigate an increasingly complex risk environment.

AML Software Vendors in Australia: Mapping the Top 10 Leaders Shaping Modern Compliance