AI Transaction Monitoring for Detecting RTP Fraud in Australia
Real time payments move money in seconds. Fraud now has the same advantage.
Introduction
Australia’s real time payments infrastructure has changed how money moves. Payments that once took hours or days now settle almost instantly. This speed has delivered clear benefits for consumers and businesses, but it has also reshaped fraud risk in ways traditional controls were never designed to handle.
In real time payment environments, fraud does not wait for end of day monitoring or post transaction reviews. By the time a suspicious transaction is detected, funds are often already gone.
This is why AI transaction monitoring has become central to detecting RTP fraud in Australia. Not as a buzzword, but as a practical response to a payment environment where timing, context, and decision speed determine outcomes.
This blog explores how RTP fraud differs from traditional fraud, why conventional monitoring struggles, and how AI driven transaction monitoring supports faster, smarter detection in Australia’s real time payments landscape.

Why RTP Fraud Is a Different Problem
Real time payment fraud behaves differently from fraud in batch based systems.
Speed removes recovery windows
Once funds move, recovery is difficult or impossible. Detection must happen before or during the transaction, not after.
Scams dominate RTP fraud
Many RTP fraud cases involve authorised payments where customers are manipulated rather than credentials being stolen.
Context matters more than rules
A transaction may look legitimate in isolation but suspicious when viewed alongside behaviour, timing, and sequence.
Volume amplifies risk
High transaction volumes create noise that can hide genuine fraud signals.
These characteristics demand a fundamentally different approach to transaction monitoring.
Why Traditional Transaction Monitoring Struggles with RTP
Legacy transaction monitoring systems were built for slower payment rails.
They rely on:
- Static thresholds
- Post event analysis
- Batch processing
- Manual investigation queues
In RTP environments, these approaches break down.
Alerts arrive too late
Detection after settlement offers insight, not prevention.
Thresholds generate noise
Low thresholds overwhelm teams. High thresholds miss emerging scams.
Manual review does not scale
Human review cannot keep pace with real time transaction flows.
This is not a failure of teams. It is a mismatch between system design and payment reality.
What AI Transaction Monitoring Changes
AI transaction monitoring does not simply automate existing rules. It changes how risk is identified and prioritised in real time.
1. Behavioural understanding rather than static checks
AI models focus on behaviour rather than individual transactions.
They analyse:
- Normal customer payment patterns
- Changes in timing, frequency, and destination
- Sudden deviations from established behaviour
This allows detection of fraud that does not break explicit rules but breaks behavioural expectations.
2. Contextual risk assessment in real time
AI transaction monitoring evaluates transactions within context.
This includes:
- Customer history
- Recent activity patterns
- Payment sequences
- Network relationships
Context allows systems to distinguish between unusual but legitimate activity and genuinely suspicious behaviour.
3. Risk based prioritisation at speed
Rather than treating all alerts equally, AI models assign relative risk.
This enables:
- Faster decisions on high risk transactions
- Graduated responses rather than binary blocks
- Better use of limited intervention windows
In RTP environments, prioritisation is critical.
4. Adaptation to evolving scam tactics
Scam tactics change quickly.
AI models can adapt by:
- Learning from confirmed fraud outcomes
- Adjusting to new behavioural patterns
- Reducing reliance on constant manual rule updates
This improves resilience without constant reconfiguration.
How AI Detects RTP Fraud in Practice
AI transaction monitoring supports RTP fraud detection across several stages.
Pre transaction risk sensing
Before funds move, AI assesses:
- Whether the transaction fits normal behaviour
- Whether recent activity suggests manipulation
- Whether destinations are unusual for the customer
This stage supports intervention before settlement.
In transaction decisioning
During transaction processing, AI helps determine:
- Whether to allow the payment
- Whether to introduce friction
- Whether to delay for verification
Timing is critical. Decisions must be fast and proportionate.
Post transaction learning
After transactions complete, outcomes feed back into models.
Confirmed fraud, false positives, and customer disputes all improve future detection accuracy.

RTP Fraud Scenarios Where AI Adds Value
Several RTP fraud scenarios benefit strongly from AI driven monitoring.
Authorised push payment scams
Where customers are manipulated into sending funds themselves.
Sudden behavioural shifts
Such as first time large transfers to new payees.
Payment chaining
Rapid movement of funds across multiple accounts.
Time based anomalies
Unusual payment activity outside normal customer patterns.
Rules alone struggle to capture these dynamics reliably.
Why Explainability Still Matters in AI Transaction Monitoring
Speed does not remove the need for explainability.
Financial institutions must still be able to:
- Explain why a transaction was flagged
- Justify interventions to customers
- Defend decisions to regulators
AI transaction monitoring must therefore balance intelligence with transparency.
Explainable signals improve trust, adoption, and regulatory confidence.
Australia Specific Considerations for RTP Fraud Detection
Australia’s RTP environment introduces specific challenges.
Fast domestic payment rails
Settlement speed leaves little room for post event action.
High scam prevalence
Many fraud cases involve genuine customers under manipulation.
Strong regulatory expectations
Institutions must demonstrate risk based, defensible controls.
Lean operational teams
Efficiency matters as much as effectiveness.
For financial institutions, AI transaction monitoring must reduce burden without compromising protection.
Common Pitfalls When Using AI for RTP Monitoring
AI is powerful, but misapplied it can create new risks.
Over reliance on black box models
Lack of transparency undermines trust and governance.
Excessive friction
Overly aggressive responses damage customer relationships.
Poor data foundations
AI reflects data quality. Weak inputs produce weak outcomes.
Ignoring operational workflows
Detection without response coordination limits value.
Successful deployments avoid these traps through careful design.
How AI Transaction Monitoring Fits with Broader Financial Crime Controls
RTP fraud rarely exists in isolation.
Scam proceeds may:
- Flow through multiple accounts
- Trigger downstream laundering risks
- Involve mule networks
AI transaction monitoring is most effective when connected with broader financial crime monitoring and investigation workflows.
This enables:
- Earlier detection
- Better case linkage
- More efficient investigations
- Stronger regulatory outcomes
The Role of Human Oversight
Even in real time environments, humans matter.
Analysts:
- Validate patterns
- Review edge cases
- Improve models through feedback
- Handle customer interactions
AI supports faster, more informed decisions, but does not remove responsibility.
Where Tookitaki Fits in RTP Fraud Detection
Tookitaki approaches AI transaction monitoring as an intelligence driven capability rather than a rule replacement exercise.
Within the FinCense platform, AI is used to:
- Detect behavioural anomalies in real time
- Prioritise RTP risk meaningfully
- Reduce false positives
- Support explainable decisions
- Feed intelligence into downstream monitoring and investigations
This approach helps institutions manage RTP fraud without overwhelming teams or customers.
What the Future of RTP Fraud Detection Looks Like
As real time payments continue to grow, fraud detection will evolve alongside them.
Future capabilities will focus on:
- Faster decision cycles
- Stronger behavioural intelligence
- Closer integration between fraud and AML
- Better customer communication at the point of risk
- Continuous learning rather than static controls
Institutions that invest in adaptive AI transaction monitoring will be better positioned to protect customers in real time environments.
Conclusion
RTP fraud in Australia is not a future problem. It is a present one shaped by speed, scale, and evolving scam tactics.
Traditional transaction monitoring approaches struggle because they were designed for a slower world. AI transaction monitoring offers a practical way to detect RTP fraud earlier, prioritise risk intelligently, and respond within shrinking time windows.
When applied responsibly, with explainability and governance, AI becomes a critical ally in protecting customers and preserving trust in real time payments.
In RTP environments, detection delayed is detection denied.
AI transaction monitoring helps institutions act when it still matters.
Experience the most intelligent AML and fraud prevention platform
Experience the most intelligent AML and fraud prevention platform
Experience the most intelligent AML and fraud prevention platform
Top AML Scenarios in ASEAN

The Role of AML Software in Compliance

The Role of AML Software in Compliance









