Blog

What is Singapore's Shared Responsibility Framework to Combat Phishing

Site Logo
Tookitaki
08 April 2024
read
5 min

Phishing scams are on the rise, posing a significant challenge to the safety of digital transactions and online security. To address this growing concern, Singapore is taking a proactive and innovative approach with the introduction of the Shared Responsibility Framework (SRF). This new initiative aims to create a safer digital environment by outlining specific responsibilities for financial institutions and telecommunication companies to combat phishing scams effectively. The SRF is set to be rolled out later in 2024, according to media reports.

The Singapore Police Force reported a significant surge of 49.6 per cent in scam and cybercrime cases in 2023, reaching 50,376 compared to 33,669 cases in 2022. Despite this increase, there was a slight dip of 1.3 per cent in the total amount lost, totaling $651.8 million in 2023 compared to $660.7 million in 2022.

The development and proposal of the SRF is a collaborative effort led by the Monetary Authority of Singapore (MAS) and the Infocomm Media Development Authority (IMDA). Together, these agencies are laying the groundwork for a system where both service providers and consumers share the responsibility of preventing scams. This collective approach is designed to strengthen the overall resilience of Singapore's digital landscape against the threats posed by cybercriminals.

Exploring the Shared Responsibility Framework (SRF)

Overview of the SRF

The Shared Responsibility Framework (SRF), as jointly proposed by the Monetary Authority of Singapore (MAS) and the Infocomm Media Development Authority (IMDA), introduces a systematic approach to combating phishing scams. The core aim of the SRF is to:

  • Clearly define and assign responsibilities to financial institutions (FIs) and telecommunication companies (Telcos).
  • Ensure these entities actively participate in mitigating the risks and damages associated with phishing scams.

This initiative represents a strategic move to enhance digital security and trust within Singapore's financial and communication ecosystems, making it more difficult for scammers to exploit these platforms.

Building Upon Previous Frameworks

The SRF is not developed in isolation but rather as an evolution of existing efforts to secure digital transactions against fraud. Here’s how it builds on previous frameworks:

  • Expands the Scope of Responsibility: Unlike previous frameworks that primarily focused on FIs, the SRF brings Telcos into the fold, recognizing their role in enabling digital communications that could be exploited for scams.
  • Comprehensive Approach: It introduces a more detailed set of duties for both FIs and Telcos, aiming for a more thorough and nuanced approach to scam prevention.
  • Collaborative Effort: Encouraging a partnership between FIs, Telcos, and the regulatory authorities, the SRF fosters a more cohesive defense against phishing scams, making it a collective responsibility.

Through these enhancements, the SRF aims to create a more robust and resilient digital environment, safeguarding consumers and businesses alike from the evolving threats of cybercrime.

{{ cta-first }}

Key Components of the Shared Responsibility Framework (SRF)

Duties Assigned to Financial Institutions (FIs) and Telecommunication Companies (Telcos)

Under the SRF, both FIs and Telcos are entrusted with specific duties to mitigate the impact of phishing scams:

  • Financial Institutions (FIs): Their responsibilities include implementing robust verification processes for transactions, ensuring timely alerts to customers on transaction activities, and maintaining stringent security measures to detect and prevent unauthorized transactions.
  • Telecommunication Companies (Telcos): Telcos are required to implement scam filters to block phishing messages and calls, manage the integrity of SMS sender IDs, and assist in the rapid dissemination of scam alerts to consumers.
  • Payouts to Victims: When these duties are breached, resulting in losses from phishing scams, the SRF mandates that the responsible party—whether FIs or Telcos—must compensate the affected scam victims. This component of the framework ensures that there is a tangible incentive for both FIs and Telcos to adhere strictly to their assigned responsibilities.

The "Waterfall Approach" to Determining Responsibility

The SRF introduces a "waterfall approach" for determining which entity is responsible for compensating victims of phishing scams:

  • Primary Responsibility with FIs: Given their role as custodians of consumer funds, FIs are placed at the forefront of the responsibility hierarchy. They are expected to bear the brunt of the losses if it is found that their preventive measures were inadequate.
  • Secondary Role of Telcos: Telcos are considered the second line of defense, responsible for ensuring that their infrastructure is not used as a medium for scams. They are held accountable if it is determined that a lack of adequate scam filters or SMS sender ID verification contributed to the scam.
  • Sequential Accountability: The approach prioritizes accountability, ensuring that the entity directly responsible for the breach of duty compensates the affected parties. Only if FIs and Telcos have fulfilled their respective duties and a scam still occurs will the framework explore other measures without necessarily requiring payouts to consumers.

This structured approach emphasizes the importance of both preventive measures and swift response to incidents, underlining the shared responsibility between FIs, Telcos, and consumers in combating phishing scams.

{{cta-ebook}}

Impact of the SRF on Financial Institutions and Telecommunication Companies

The Shared Responsibility Framework (SRF) significantly boosts the accountability of Financial Institutions (FIs) and Telecommunication Companies (Telcos) directly to their consumers. By clearly outlining their roles in preventing phishing scams, the SRF ensures that FIs and Telcos are not just passive participants but active guardians of consumer safety and trust. This heightened accountability is designed to motivate these entities to adopt and maintain rigorous anti-scam controls, ensuring a safer digital environment for all users.

To align with the requirements of the SRF, both FIs and Telcos may need to undergo substantial operational and regulatory transformations. For FIs, this could mean enhancing their transaction monitoring and verification processes, while for Telcos, it might involve upgrading their infrastructure to better filter and block scam communications. These changes not only represent a shift towards more proactive scam prevention strategies but also underscore a collaborative commitment to safeguarding consumers against the evolving threat of digital scams.

Challenges and Opportunities

Implementing the Shared Responsibility Framework (SRF) poses a set of challenges that span technological, operational, and regulatory domains. Technologically, both financial institutions (FIs) and telecommunication companies (Telcos) may face the need to overhaul existing systems to meet the stringent requirements of the SRF, a process that can be time-consuming and costly. 

Operationally, the shift to a more proactive scam prevention strategy demands significant training and process re-engineering to ensure all staff are aligned with the new protocols. From a regulatory perspective, ensuring compliance with the SRF while balancing privacy concerns and avoiding overregulation presents a delicate balancing act for both FIs and Telcos.

Despite these challenges, the SRF also opens up a wealth of opportunities for enhancing the security of the digital banking and payments ecosystem in Singapore. By fostering a culture of shared responsibility, the SRF encourages innovation in scam prevention technologies and strategies, potentially setting a global benchmark for digital financial security. 

Moreover, the collaborative effort between FIs, Telcos, and regulatory bodies can lead to the development of more robust standards and practices that not only protect consumers but also enhance their confidence in digital transactions. Ultimately, the successful implementation of the SRF could position Singapore as a leader in the fight against digital financial crimes, showcasing the potential for a more secure and trustworthy digital future.

Enhancing Scam Prevention through Collaboration and Innovation

In the quest to bolster scam prevention and secure digital transactions, Tookitaki stands out as a key player, offering cutting-edge solutions designed to combat fraud and money laundering. Through its innovative platforms, FinCense and the Anti-Financial Crime (AFC) Ecosystem, Tookitaki is ideally positioned to support the objectives of Singapore's Shared Responsibility Framework (SRF). These platforms provide the technological backbone financial institutions need to enhance their scam prevention efforts, aligning perfectly with the SRF's call for heightened accountability and proactive measures in safeguarding consumer interests.

Tookitaki's technology is not just about meeting the current demands of the SRF; it's about future-proofing against evolving digital threats. By leveraging the collective intelligence and real-time data analytics capabilities of FinCense and the AFC Ecosystem, Tookitaki empowers FIs to not only comply with their duties under the SRF but to exceed them, creating a financial environment that is safer for consumers. Through partnerships with Tookitaki, institutions can make significant strides in transforming Singapore’s digital landscape into a bastion of security and trust for users worldwide.

 

Talk to an Expert

Ready to Streamline Your Anti-Financial Crime Compliance?

Our Thought Leadership Guides

Blogs
05 Jan 2026
6 min
read

When Luck Isn’t Luck: Inside the Crown Casino Deception That Fooled the House

1. Introduction to the Scam

In October 2025, a luxury casino overlooking Sydney Harbour became the unlikely stage for one of Australia’s most unusual fraud cases of the year 2025.

There were no phishing links, fake investment platforms, or anonymous scam calls. Instead, the deception unfolded in plain sight across gaming tables, surveillance cameras, and whispered instructions delivered through hidden earpieces.

What initially appeared to be an extraordinary winning streak soon revealed something far more calculated. Over a series of gambling sessions, a visiting couple allegedly accumulated more than A$1.17 million in winnings at Crown Sydney. By late November, the pattern had raised enough concern for casino staff to alert authorities.

The couple were subsequently arrested and charged by New South Wales Police for allegedly dishonestly obtaining a financial advantage by deception.

This was not a random act of cheating.
It was an alleged technology-assisted, coordinated deception, executed with precision, speed, and behavioural discipline.

The case challenges a common assumption in financial crime. Fraud does not always originate online. Sometimes, it operates openly, exploiting trust in physical presence and gaps in behavioural monitoring.

Talk to an Expert

2. Anatomy of the Scam

Unlike digital payment fraud, this alleged scheme relied on physical execution, real-time coordination, and human decision-making, making it harder to detect in its early stages.

Step 1: Strategic Entry and Short-Term Targeting

The couple arrived in Sydney in October 2025 and began visiting the casino shortly after. Short-stay visitors with no local transaction history often present limited behavioural baselines, particularly in hospitality and gaming environments.

This lack of historical context created an ideal entry point.

Step 2: Use of Covert Recording Devices

Casino staff later identified suspicious equipment allegedly used during gameplay. Police reportedly seized:

  • A small concealed camera attached to clothing
  • A modified mobile phone with recording attachments
  • Custom-built mirrors and magnetised tools

These devices allegedly allowed the capture of live game information not normally accessible to players.

Step 3: Real-Time Remote Coordination

The couple allegedly wore concealed earpieces during play, suggesting live communication with external accomplices. This setup would have enabled:

  • Real-time interpretation of captured visuals
  • Calculation of betting advantages
  • Immediate signalling of wagering decisions

This was not instinct or chance.
It was alleged external intelligence delivered in real time.

Step 4: Repeated High-Value Wins

Across multiple sessions in October and November 2025, the couple reportedly amassed winnings exceeding A$1.17 million. The consistency and scale of success eventually triggered internal alerts within the casino’s surveillance and risk teams.

At this point, the pattern itself became the red flag.

Step 5: Detection and Arrest

Casino staff escalated their concerns to law enforcement. On 27 November 2025, NSW Police arrested the couple, executed search warrants at their accommodation, and seized equipment, cash, and personal items.

The alleged deception ended not because probability failed, but because behaviour stopped making sense.

3. Why This Scam Worked: The Psychology at Play

This case allegedly succeeded because it exploited human assumptions rather than technical weaknesses.

1. The Luck Bias

Casinos are built on probability. Exceptional winning streaks are rare, but not impossible. That uncertainty creates a narrow window where deception can hide behind chance.

2. Trust in Physical Presence

Face-to-face activity feels legitimate. A well-presented individual at a gaming table attracts less suspicion than an anonymous digital transaction.

3. Fragmented Oversight

Unlike banks, where fraud teams monitor end-to-end flows, casinos distribute responsibility across:

  • Dealers
  • Floor supervisors
  • Surveillance teams
  • Risk and compliance units

This fragmentation can delay pattern recognition.

4. Short-Duration Execution

The alleged activity unfolded over weeks, not years. Short-lived, high-impact schemes often evade traditional threshold-based monitoring.

4. The Financial Crime Lens Behind the Case

While this incident occurred in a gambling environment, the mechanics closely mirror broader financial crime typologies.

1. Information Asymmetry Exploitation

Covert devices allegedly created an unfair informational advantage, similar to insider abuse or privileged data misuse in financial markets.

2. Real-Time Decision Exploitation

Live coordination and immediate action resemble:

  • Authorised push payment fraud
  • Account takeover orchestration
  • Social engineering campaigns

Speed neutralised conventional controls.

3. Rapid Value Accumulation

Large gains over a compressed timeframe are classic precursors to:

  • Asset conversion
  • Laundering attempts
  • Cross-border fund movement

Had the activity continued, the next phase could have involved integration into the broader financial system.

ChatGPT Image Jan 5, 2026, 12_10_24 PM

5. Red Flags for Casinos, Banks, and Regulators

This case highlights behavioural signals that extend well beyond gaming floors.

A. Behavioural Red Flags

  • Highly consistent success rates across sessions
  • Near-perfect timing of decisions
  • Limited variance in betting behaviour

B. Operational Red Flags

  • Concealed devices or unusual attire
  • Repeated table changes followed by immediate wins
  • Non-verbal coordination during gameplay

C. Financial Red Flags

  • Sudden accumulation of high-value winnings
  • Requests for rapid payout or conversion
  • Intent to move value across borders shortly after gains

These indicators closely resemble red flags seen in mule networks and high-velocity fraud schemes.

6. How Tookitaki Strengthens Defences

This case reinforces why fraud prevention must move beyond channel-specific controls.

1. Scenario-Driven Intelligence from the AFC Ecosystem

Expert-contributed scenarios help institutions recognise patterns that fall outside traditional fraud categories, including:

  • Behavioural precision
  • Coordinated multi-actor execution
  • Short-duration, high-impact schemes

2. Behavioural Pattern Recognition

Tookitaki’s intelligence approach prioritises:

  • Probability-defying outcomes
  • Decision timing anomalies
  • Consistency where randomness should exist

These signals often surface risk before losses escalate.

3. Cross-Domain Fraud Thinking

The same intelligence principles used to detect:

  • Account takeovers
  • Payment scams
  • Mule networks

are equally applicable to non-traditional environments where value moves quickly.

Fraud is no longer confined to banks. Detection should not be either.

7. Conclusion

The Crown Sydney deception case is a reminder that modern fraud does not always arrive through screens, links, or malware.

Sometimes, it walks confidently through the front door.

This alleged scheme relied on behavioural discipline, real-time coordination, and technological advantage, all hidden behind the illusion of chance.

As fraud techniques continue to evolve, institutions must look beyond static rules and siloed monitoring. The future of fraud prevention lies in understanding behaviour, recognising improbable patterns, and sharing intelligence across ecosystems.

Because when luck stops looking like luck, the signal is already there.

When Luck Isn’t Luck: Inside the Crown Casino Deception That Fooled the House
Blogs
05 Jan 2026
6 min
read

Singapore’s Financial Shield: Choosing the Right AML Compliance Software Solutions

When trust is currency, AML compliance becomes your strongest asset.

In Singapore’s fast-evolving financial ecosystem, the battle against money laundering is intensifying. With MAS ramping up expectations and international regulators scrutinising cross-border flows, financial institutions must act decisively. Manual processes and outdated tools are no longer enough. What’s needed is a modern, intelligent, and adaptable approach—enter AML compliance software solutions.

This blog takes a close look at what makes a strong AML compliance software solution, the features to prioritise, and how Singapore’s institutions can future-proof their compliance programmes.

Talk to an Expert

Why AML Compliance Software Solutions Matter in Singapore

Singapore is a major financial hub, but that status also makes it a high-risk jurisdiction for complex money laundering techniques. From trade-based laundering and shell companies to cyber-enabled fraud, financial crime threats are becoming more global, fast-moving, and tech-driven.

According to the latest MAS Money Laundering Risk Assessment, sectors like banking and cross-border payments are under increasing pressure. Institutions need:

  • Real-time visibility into suspicious behaviour
  • Lower false positives
  • Faster reporting turnaround
  • Cost-effective compliance

The right AML software offers all of this—when chosen well.

What is AML Compliance Software?

AML compliance software refers to digital platforms designed to help financial institutions detect, investigate, report, and prevent financial crime in line with regulatory requirements. These systems combine rule-based logic, machine learning, and scenario-based monitoring to provide end-to-end compliance coverage.

Key use cases include:

Core Features to Look for in AML Compliance Software Solutions

Not all AML platforms are created equal. Here are the top features your solution must have:

1. Real-Time Transaction Monitoring

The ability to flag suspicious activities as they happen—especially critical in high-risk verticals such as remittance, retail banking, and digital assets.

2. Risk-Based Approach

Modern systems allow for dynamic risk scoring based on customer behaviour, transaction patterns, and geographical exposure. This enables prioritised investigations.

3. AI and Machine Learning Models

Look for adaptive learning capabilities that improve accuracy over time, helping to reduce false positives and uncover previously unseen threats.

4. Integrated Screening Engine

Your system should seamlessly screen customers and transactions against global sanctions lists, PEPs, and adverse media sources.

5. End-to-End Case Management

From alert generation to case disposition and reporting, the platform should provide a unified workflow that helps analysts move faster.

6. Regulatory Alignment

Built-in compliance with local MAS guidelines (such as PSN02, AML Notices, and STR filing requirements) is essential for institutions in Singapore.

7. Explainability and Auditability

Tools that provide clear reasoning behind alerts and decisions can ensure internal transparency and regulatory acceptance.

ChatGPT Image Jan 5, 2026, 11_17_14 AM

Common Challenges in AML Compliance

Singaporean financial institutions often face the following hurdles:

  • High false positive rates
  • Fragmented data systems across business lines
  • Manual case reviews slowing down investigations
  • Delayed or inaccurate regulatory reports
  • Difficulty adjusting to new typologies or scams

These challenges aren’t just operational—they can lead to regulatory penalties, reputational damage, and lost customer trust. AML software solutions address these pain points by introducing automation, intelligence, and scalability.

How Tookitaki’s FinCense Delivers End-to-End AML Compliance

Tookitaki’s FinCense platform is purpose-built to solve compliance pain points faced by financial institutions across Singapore and the broader APAC region.

Key Benefits:

  • Out-of-the-box scenarios from the AFC Ecosystem that adapt to new risk patterns
  • Federated learning to improve model accuracy across institutions without compromising data privacy
  • Smart Disposition Engine for automated case narration, regulatory reporting, and audit readiness
  • Real-time monitoring with adaptive risk scoring and alert prioritisation

With FinCense, institutions have reported:

  • 72% reduction in false positives
  • 3.5x increase in analyst efficiency
  • Greater regulator confidence due to better audit trails

FinCense isn’t just software—it’s a trust layer for modern financial crime prevention.

Best Practices for Evaluating AML Compliance Software

Before investing, financial institutions should ask:

  1. Does the software scale with your future growth and risk exposure?
  2. Can it localise to Singapore’s regulatory and typology landscape?
  3. Is the AI explainable, and is the platform auditable?
  4. Can it ingest external intelligence and industry scenarios?
  5. How quickly can you update detection rules based on new threats?

Singapore’s Regulatory Expectations

The Monetary Authority of Singapore (MAS) has emphasised risk-based, tech-enabled compliance in its guidance. Recent thematic reviews and enforcement actions have highlighted the importance of:

  • Timely Suspicious Transaction Reporting (STRs)
  • Strong detection of mule accounts and digital fraud patterns
  • Collaboration with industry peers to address cross-institution threats

AML software is no longer just about ticking boxes—it must show effectiveness, agility, and accountability.

Conclusion: Future-Ready Compliance Begins with the Right Tools

Singapore’s compliance landscape is becoming more complex, more real-time, and more collaborative. The right AML software helps financial institutions stay one step ahead—not just of regulators, but of financial criminals.

From screening to reporting, from risk scoring to AI-powered decisioning, AML compliance software solutions are no longer optional. They are mission-critical.

Choose wisely, and you don’t just meet compliance—you build competitive trust.

Singapore’s Financial Shield: Choosing the Right AML Compliance Software Solutions
Blogs
23 Dec 2025
6 min
read

AML Failures Are Now Capital Risks: The Bendigo Case Proves It

When Australian regulators translate AML failures into capital penalties, it signals more than enforcement. It signals a fundamental shift in how financial crime risk is priced, governed, and punished.

The recent action against Bendigo and Adelaide Bank marks a decisive turning point in Australia’s regulatory posture. Weak anti-money laundering controls are no longer viewed as back-office compliance shortcomings. They are now being treated as prudential risks with direct balance-sheet consequences.

This is not just another enforcement headline. It is a clear warning to the entire financial sector.

Talk to an Expert

What happened at Bendigo Bank

Following an independent review, regulators identified significant and persistent deficiencies in Bendigo Bank’s financial crime control framework. What stood out was not only the severity of the gaps, but their duration.

Key weaknesses remained unresolved for more than six years, spanning from 2019 to 2025. These were not confined to a single branch, product, or customer segment. They were assessed as systemic, affecting governance, oversight, and the effectiveness of AML controls across the institution.

In response, regulators acted in coordination:

The framing matters. This was not positioned as punishment for an isolated incident. Regulators explicitly pointed to long-standing control failures and prolonged exposure to financial crime risk.

Why this is not just another AML penalty

This case stands apart from past enforcement actions for one critical reason.

Capital was used as the lever.

A capital add-on is fundamentally different from a fine or enforceable undertaking. By requiring additional capital to be held, APRA is signalling that deficiencies in financial crime controls materially increase an institution’s operational risk profile.

Until those risks are demonstrably addressed, they must be absorbed on the balance sheet.

The consequences are tangible:

  • Reduced capital flexibility
  • Pressure on return on equity
  • Constraints on growth and strategic initiatives
  • Prolonged supervisory scrutiny

The underlying message is unambiguous.
AML weaknesses now come with a measurable capital cost.

AML failures are now viewed as prudential risk

This case also signals a shift in how regulators define the problem.

The findings were not limited to missed alerts or procedural non-compliance. Regulators highlighted broader, structural weaknesses, including:

  • Ineffective transaction monitoring
  • Inadequate customer risk assessment and limited beneficial ownership visibility
  • Weak escalation from branch-level operations
  • Fragmented oversight between frontline teams and central compliance
  • Governance gaps that allowed weaknesses to persist undetected

These are not execution errors.
They are risk management failures.

This explains the joint involvement of APRA and AUSTRAC. Financial crime controls are now firmly embedded within expectations around enterprise risk management, institutional resilience, and safety and soundness.

Six years of exposure is a governance failure

Perhaps the most troubling aspect of the Bendigo case is duration.

When material AML weaknesses persist across multiple years, audit cycles, and regulatory engagements, the issue is no longer technology alone. It becomes a question of:

  • Risk culture
  • Accountability
  • Board oversight
  • Management prioritisation

Australian regulators have made it increasingly clear that financial crime risk cannot be fully delegated to second-line functions. Boards and senior executives are expected to understand AML risk in operational and strategic terms, not just policy language.

This reflects a broader global trend. Prolonged AML failures are now widely treated as indicators of governance weakness, not just compliance gaps.

Why joint APRA–AUSTRAC action matters

The coordinated response itself is a signal.

APRA’s mandate centres on institutional stability and resilience. AUSTRAC’s mandate focuses on financial intelligence and the disruption of serious and organised crime. When both regulators act together, it reflects a shared conclusion: financial crime control failures have crossed into systemic risk territory.

This convergence is becoming increasingly common internationally. Regulators are no longer willing to separate AML compliance from prudential supervision when weaknesses are persistent, enterprise-wide, and inadequately addressed.

For Australian institutions, this means AML maturity is now inseparable from broader risk and capital considerations.

ChatGPT Image Dec 22, 2025, 12_15_31 PM

The hidden cost of delayed remediation

The Bendigo case also exposes an uncomfortable truth.

Delayed remediation is expensive.

When control weaknesses are allowed to persist, institutions often face:

  • Large-scale, multi-year transformation programs
  • Significant technology modernisation costs
  • Extensive retraining and cultural change initiatives
  • Capital locked up until regulators are satisfied
  • Sustained supervisory and reputational pressure

What could have been incremental improvements years earlier can escalate into a full institutional overhaul when left unresolved.

In this context, capital add-ons act not just as penalties, but as forcing mechanisms to ensure sustained executive and board-level focus.

What this means for Australian banks and fintechs

This case should prompt serious reflection across the sector.

Several lessons are already clear:

  • Static, rules-based monitoring struggles to keep pace with evolving typologies
  • Siloed fraud and AML functions miss cross-channel risk patterns
  • Documented controls are insufficient if they are not effective in practice
  • Regulators are increasingly focused on outcomes, not frameworks

Importantly, this applies beyond major banks. Regional institutions, mutuals, and digitally expanding fintechs are firmly within scope. Scale is no longer a mitigating factor.

Where technology must step in before capital is at risk

Cases like Bendigo expose a widening gap between regulatory expectations and how financial crime controls are still implemented in many institutions. Legacy systems, fragmented monitoring, and periodic reviews are increasingly misaligned with the realities of modern financial crime.

At Tookitaki, financial crime prevention is approached as a continuous intelligence challenge, rather than a static compliance obligation. The emphasis is on adaptability, explainability, and real-time risk visibility, enabling institutions to surface emerging threats before they escalate into supervisory or capital issues.

By combining real-time transaction monitoring with collaborative, scenario-driven intelligence, institutions can reduce blind spots and demonstrate sustained control effectiveness. In an environment where regulators are increasingly focused on whether controls actually work, this ability is becoming central to maintaining regulatory confidence.

Many of the weaknesses highlighted in this case mirror patterns seen across recent regulatory reviews. Institutions that address them early are far better positioned to avoid capital shocks later.

From compliance posture to risk ownership

The clearest takeaway from the Bendigo case is the need for a mindset shift.

Financial crime risk can no longer be treated as a downstream compliance concern. It must be owned as a core institutional risk, alongside credit, liquidity, and operational resilience.

Institutions that proactively modernise their AML capabilities and strengthen governance will be better placed to avoid prolonged remediation, capital constraints, and reputational damage.

A turning point for trust and resilience

The action against Bendigo Bank is not about one institution. It reflects a broader regulatory recalibration.

AML failures are now capital risks.

In Australia’s evolving regulatory landscape, AML is no longer a cost of doing business.
It is a measure of institutional resilience, governance strength, and trustworthiness.

Those that adapt early will navigate this shift with confidence. Those that do not may find that the cost of getting AML wrong is far higher than expected.

AML Failures Are Now Capital Risks: The Bendigo Case Proves It