Blog

The Challenges of Implementing AML Compliance in Saudi Arabia and How Tookitaki Can Help

Site Logo
Tookitaki
03 July 2023
read
8 min

In recent years, the importance of Anti-Money Laundering (AML) compliance has grown significantly in Saudi Arabia. As a key player in the global financial landscape, the country is committed to combating financial crimes and ensuring the integrity of its financial system. AML compliance is crucial for maintaining transparency, mitigating risks, and protecting against money laundering, terrorist financing, and other illicit activities.

Implementing AML compliance measures in Saudi Arabia comes with its own set of challenges. The complex regulatory landscape, evolving regulations, and the need to keep up with international standards pose significant hurdles for financial institutions. Additionally, ensuring the effectiveness of AML programs, detecting emerging risks, and managing compliance costs are ongoing challenges faced by organizations operating in the country.

Tookitaki is a trusted and leading provider of AML compliance solutions, offering cutting-edge technology and advanced analytics to assist financial institutions in meeting their AML obligations. With its innovative solutions, Tookitaki helps organizations address the challenges of implementing AML compliance in Saudi Arabia by streamlining processes, enhancing detection accuracy, and ensuring compliance with regulatory requirements. By leveraging Tookitaki's expertise, financial institutions can optimize their AML programs and strengthen their overall compliance framework.

Regulatory Landscape in Saudi Arabia

Regulatory Framework for AML Compliance in Saudi Arabia

Saudi Arabia has established a comprehensive regulatory framework to combat money laundering and terrorist financing. The key regulatory bodies responsible for enforcing AML compliance include:

  • Saudi Arabian Monetary Authority (SAMA): SAMA is the central bank of Saudi Arabia and plays a vital role in setting and enforcing AML regulations for financial institutions.
  • Capital Market Authority (CMA): CMA regulates and supervises the capital market in Saudi Arabia, including securities firms and investment funds, and ensures compliance with AML requirements.
  • Saudi Arabian Financial Investigation Unit (SAFIU): SAFIU is the financial intelligence unit in Saudi Arabia responsible for receiving, analyzing, and disseminating suspicious transaction reports (STRs) to combat money laundering and terrorist financing.

Key Regulations and Requirements

Financial institutions operating in Saudi Arabia must adhere to various regulations and requirements to maintain AML compliance. Some of the key regulations include:

  • Anti-Money Laundering Law: The Anti-Money Laundering Law outlines the legal framework for combating money laundering and terrorist financing activities in Saudi Arabia.
  • Know Your Customer (KYC) Requirements: Financial institutions must implement robust KYC procedures to verify the identity and assess the risk of their customers.
  • Suspicious Transaction Reporting: Financial institutions are required to report any suspicious transactions or activities to SAFIU in a timely manner.
  • Customer Due Diligence (CDD): Financial institutions must perform thorough due diligence on their customers, including ongoing monitoring of customer transactions and risk assessments.
Saudi Arabia-Know Your Country-1

Challenges Faced by Financial Institutions

Meeting the regulatory obligations for AML compliance in Saudi Arabia can present several challenges for financial institutions, including:

  • Evolving Regulations: The regulatory landscape is constantly evolving, with new regulations and guidelines being introduced. Financial institutions need to stay updated and adapt their AML programs accordingly.
  • Cross-Border Transactions: Saudi Arabia's position as an international financial hub means financial institutions often deal with cross-border transactions, requiring them to navigate complex international AML regulations.
  • Resource Constraints: Implementing and maintaining an effective AML compliance program requires significant resources, including skilled personnel, advanced technology, and ongoing training.
  • Risk Assessment and Monitoring: Financial institutions must accurately assess and monitor their customer's risk profiles to detect and prevent money laundering and terrorist financing activities.

Challenges in AML Compliance Implementation

Financial institutions in Saudi Arabia often face challenges in developing robust and effective AML programs due many factors.

  • Building a strong AML program requires expertise in areas such as risk assessment, transaction monitoring, and regulatory compliance. However, many financial institutions may lack the necessary in-house expertise to develop and implement comprehensive AML frameworks.
  • Allocating sufficient resources, including skilled personnel, technology infrastructure, and training, can be a challenge for financial institutions, especially smaller organizations with limited budgets.
  • Identifying and monitoring complex transactions that involve multiple parties, layered transactions, or digital currencies can be challenging. These transactions may be designed to obfuscate the origin and destination of funds.
  • Financial institutions need to stay ahead of emerging risks, including new techniques used by criminals to launder money or finance illegal activities. This requires ongoing monitoring and updating of AML strategies and technologies.
  • AML regulations in Saudi Arabia and globally undergo frequent updates and revisions to address emerging threats. Financial institutions must stay updated and ensure their AML programs align with the latest regulatory requirements.
  • Interpreting and implementing complex AML regulations can be challenging, as it requires a deep understanding of the legal framework and its practical application.
  • Ensuring the accuracy, completeness, and reliability of data used for AML monitoring and reporting is essential. Financial institutions must have robust data management processes to address data quality issues.
  • Financial institutions often deal with data from multiple sources, such as transaction data, customer information, and external data feeds. Integrating and consolidating this data in a meaningful way can be complex.

How Tookitaki Can Help

Tookitaki offers a comprehensive AML solution -- the Anti-Money Laundering Suite (AML Suite) -- that empowers financial institutions in Saudi Arabia to combat money laundering and financial crime effectively. Its solution combines advanced machine learning algorithms, data analytics, and automation to enhance detection accuracy, streamline compliance processes, and ensure regulatory compliance.

The AML Suite operates as an end-to-end operating system, covering various stages of the compliance process, from initial screening to ongoing monitoring and case management. Banks and fintechs can achieve a seamless workflow, eliminate data silos, and ensure consistent compliance across different modules by having a cohesive and integrated system. The end-to-end approach enhances operational efficiency, reduces manual efforts, and facilitates a more holistic view of AML compliance, enabling financial institutions to stay ahead of evolving risks.

Modules within the AML Suite

Smart Screening Solutions

  • Prospect Screening: This module enables real-time screening capabilities for prospect onboarding. By leveraging smart, AI-powered fuzzy identity matching, it reduces regulatory compliance costs and exposure to risk. Prospect Screening helps financial institutions detect and prevent financial crime by screening potential customers against various watchlists, including sanctions lists, PEP databases, and adverse media. The solution provides efficient and streamlined screening processes, reducing false positive hits and assisting compliance specialists in various scenarios.
  • Name Screening: Tookitaki's Name Screening solution utilizes machine learning and Natural Language Processing (NLP) techniques to accurately score and distinguish true matches from false matches across names and transactions, in real-time and batch mode. The solution supports screening against sanctions lists, PEPs, adverse media, and local/internal blacklists, ensuring comprehensive coverage. With 50+ name-matching techniques, support for multiple attributes like name, address, gender, and a built-in transliteration engine, Name Screening provides razor-sharp matching accuracy. The state-of-the-art real-time screening architecture reduces held transactions and improves straight-through processing (STP) for a seamless customer experience.

Dynamic Risk Scoring

  • Prospect Risk Scoring: Prospect Risk Scoring (PRS) is a powerful solution that enables financial institutions to onboard prospects with reduced regulatory compliance costs and risk exposure. By defining a set of parameters that correspond to the rules, PRS offers real-time risk scoring capabilities. Financial institutions can leverage PRS to take initial scope, including factors such as address, nationality, gender, occupation, monthly income, and more, into account for risk scoring. The configurable scores for risk categories allow financial institutions to streamline the prospect onboarding process, make informed decisions, and mitigate risks effectively.
  • Customer Risk Scoring: Tookitaki's Customer Risk Scoring (CRS) is a core module within the AML Suite, powered by advanced machine learning. CRS provides scalable customer risk rating by dynamically identifying relevant risk indicators across a customer's activity. The solution offers a 360-degree customer risk profile, continuous on-demand risk scoring, and perpetual KYC for ongoing due diligence. With actionable insights based on customer risk scores, financial institutions can make accelerated and informed decisions, ensuring effective risk mitigation.

Transaction Monitoring

Tookitaki's Transaction Monitoring solution is the most comprehensive in the industry, utilizing a first-of-its-kind industry-wide typology repository and AI capabilities. It provides comprehensive risk detection and efficient alert management, offering 100% risk coverage and the ability to detect new suspicious cases. The solution includes automated threshold management, reducing the manual effort involved in threshold tuning by over 70%. With superior pattern-based detection techniques, leveraging typologies that represent real-world red flags, Transaction Monitoring helps financial institutions safeguard against new risks and threats effectively.

Case Manager

The Case Manager within Tookitaki's AML Suite provides compliance teams with a collaborative platform to work seamlessly on cases. The Case Manager includes automation that empowers investigators by automating processes such as case creation, allocation, and data gathering. Financial institutions can configure the Case Manager to improve operational efficiency, reduce manual efforts, and enhance overall effectiveness in managing and resolving cases.

How Tookitaki's Solutions Address AML Compliance Implementation Challenges in Saudi Arabia

Tookitaki's solutions specifically address the challenges faced by financial institutions in Saudi Arabia during the implementation of AML compliance measures:

  • Expertise and Resource Constraints: Tookitaki's advanced technology bridges the expertise gap by offering comprehensive AML capabilities. It enables financial institutions to leverage sophisticated AML tools without the need for extensive in-house resources.
  • Complexity of Monitoring: Tookitaki's transaction monitoring solution, powered by community insights, enhances monitoring capabilities, allowing financial institutions to detect and investigate complex financial crime activities effectively.
  • Compliance with Evolving Regulations: Tookitaki's solutions are designed to adapt to changing regulatory requirements. The platform can be easily configured to incorporate new regulations, ensuring ongoing compliance with the evolving AML landscape.
  • Data Integrity and Integration: Tookitaki's technology includes data quality controls and facilitates the integration of disparate data sources. This ensures the accuracy and reliability of data used for AML monitoring and reporting purposes.

Tookitaki's AML compliance solutions provide financial institutions in Saudi Arabia with a robust and comprehensive framework to address the challenges of AML compliance implementation. By leveraging advanced technology, financial institutions can enhance their compliance capabilities, reduce risks, and effectively combat financial crimes in a dynamic regulatory environment.

{{cta-guide}}

Benefits of Using Tookitaki's Solutions

Enhanced Detection Accuracy and Reduced False Positives

Tookitaki's advanced AML compliance solutions leverage artificial intelligence and machine learning algorithms to enhance detection accuracy. By analyzing vast amounts of data and applying sophisticated risk models, the solutions can identify suspicious activities with higher precision. This leads to a reduction in false positives, enabling investigators to focus on genuine threats.

Streamlined Compliance Processes and Increased Operational Efficiency

With Tookitaki's solutions, financial institutions can streamline their AML compliance processes. Automated features like intelligent transaction monitoring and case management help optimize workflows and improve efficiency. Financial institutions can allocate resources effectively and focus on critical compliance tasks by reducing manual efforts and enhancing operational processes.

Cost Savings and Resource Optimization

Implementing Tookitaki's AML compliance solutions can result in significant cost savings and resource optimization for financial institutions. The automated processes reduce the need for manual intervention and minimize the risk of human error. By leveraging advanced technology, financial institutions can efficiently manage their AML compliance efforts and allocate their resources more strategically.

By utilizing Tookitaki's solutions, financial institutions in Saudi Arabia can benefit from enhanced detection accuracy, streamlined compliance processes, compliance with regulatory requirements, and cost savings. These advantages enable financial institutions to strengthen their AML compliance frameworks, mitigate risks, and safeguard their operations against financial crimes.

Final Thoughts

Implementing AML compliance in Saudi Arabia comes with various challenges, including a lack of expertise and resources, complexity in monitoring financial crime activities, compliance with evolving regulations, and ensuring data accuracy. These challenges can hinder financial institutions' ability to combat money laundering and terrorist financing effectively.

Tookitaki's advanced AML compliance solutions offer a powerful solution to overcome the challenges faced in AML compliance implementation. With their cutting-edge technology, these solutions enhance detection accuracy, streamline compliance processes, ensure regulatory compliance, and optimize resource allocation. Financial institutions can rely on Tookitaki's expertise to strengthen their AML compliance frameworks and effectively address evolving risks.

Financial institutions in Saudi Arabia are encouraged to explore Tookitaki's comprehensive suite of AML compliance solutions. By contacting Tookitaki for further information or requesting a demo, they can gain valuable insights into how Tookitaki's solutions can transform their AML compliance efforts. It's time to take proactive steps towards robust AML compliance with Tookitaki's innovative technology.


Ready to Streamline Your Anti-Financial Crime Compliance?

Our Thought Leadership Guides

Blogs
27 Oct 2025
6 min
read

Eliminating AI Hallucinations in Financial Crime Detection: A Governance-First Approach

Introduction: When AI Makes It Up — The High Stakes of “Hallucinations” in AML

This is the third instalment in our series, Governance-First AI Strategy: The Future of Financial Crime Detection.

  • In Part 1, we explored the governance crisis created by compliance-heavy frameworks.

  • In Part 2, we highlighted how Singapore’s AI Verify program is pioneering independent validation as the new standard.

In this post, we turn to one of the most urgent challenges in AI-driven compliance: AI hallucinations.

Imagine an AML analyst starting their day, greeted by a queue of urgent alerts. One, flagged as “high risk,” is generated by the newest AI tool. But as the analyst investigates, it becomes clear that some transactions cited by the AI never actually happened. The explanation, while plausible, is fabricated: a textbook case of AI hallucination.

Time is wasted. Trust in the AI system is shaken. And worse, while chasing a phantom, a genuine criminal scheme may slip through.

As artificial intelligence becomes the core engine for financial crime detection, the problem of hallucinations, outputs not grounded in real data or facts, poses a serious threat to compliance, regulatory trust, and operational efficiency.

What Are AI Hallucinations and Why Are They So Risky in Finance?

AI hallucinations occur when a model produces statements or explanations that sound correct but are not grounded in real data.

In financial crime compliance, this can lead to:

  • Wild goose chases: Analysts waste valuable time chasing non-existent threats.

  • Regulatory risk: Fabricated outputs increase the chance of audit failures or penalties.

  • Customer harm: Legitimate clients may be incorrectly flagged, damaging trust and relationships.

Generative AI systems are especially vulnerable. Designed to create coherent responses, they can unintentionally invent entire scenarios. In finance, where every “fact” matters to reputations, livelihoods, and regulatory standing, there is no room for guesswork.

ChatGPT Image Oct 27, 2025, 01_15_25 PM

Why Do AI Hallucinations Happen?

The drivers are well understood:

  1. Gaps or bias in training data: Incomplete or outdated records force models to “fill in the blanks” with speculation.

  2. Overly creative design: Generative models excel at narrative-building but can fabricate plausible-sounding explanations without constraints.

  3. Ambiguous prompts or unchecked logic: Vague inputs encourage speculation, diverting the model from factual data.

Real-World Misfire: A Costly False Alarm

At a large bank, an AI-powered monitoring tool flagged accounts for “suspicious round-dollar transactions,” producing a detailed narrative about potential laundering.

The problem? Those transactions never occurred.

The AI had hallucinated the explanation, stitching together fragments of unrelated historical data. The result: a week-long audit, wasted resources, and an urgent reminder of the need for stronger governance over AI outputs.

A Governance-First Playbook to Stop Hallucinations

Forward-looking compliance teams are embedding anti-hallucination measures into their AI governance frameworks. Key practices include:

1. Rigorous, Real-World Model Training
AI models must be trained on thousands of verified AML cases, including edge cases and emerging typologies. Exposure to operational complexity reduces speculative outputs.At Tookitaki, scenario-driven drills such as deepfake scam simulations and laundering typologies continuously stress-test the system to identify risks before they reach investigators or regulators.

2. Evidence-Based Outputs, Not Vague Alerts
Traditional systems often produce alerts like: “Possible layering activity detected in account X.” Analysts are left to guess at the reasoning.Governance-first systems enforce data-anchored outputs:“Layering risk detected: five transactions on 20/06/25 match FATF typology #3. See attached evidence.”
This creates traceable, auditable insights, building efficiency and trust.

3. Human-in-the-Loop (HITL) Validation
Even advanced models require human oversight. High-stakes outputs, such as risk narratives or new typology detections, must pass through expert validation.At Tookitaki, HITL ensures:

  • Analytical transparency
  • Reduced false positives
  • No unexplained “black box” reasoning

4. Prompt Engineering and Retrieval-Augmented Generation (RAG)Ambiguity invites hallucinations. Precision prompts, combined with RAG techniques, ensure outputs are tied to verified databases and transaction logs, making fabrication nearly impossible.

Spotlight: Tookitaki’s Precision-First AI Philosophy

Tookitaki’s compliance platform is built on a governance-first architecture that treats hallucination prevention as a measurable objective.

  • Scenario-Driven Simulations: Rare typologies and evolving crime patterns are continuously tested to surface potential weaknesses before deployment.

  • Community-Powered Validation: Detection logic is refined in real time through feedback from a global network of financial crime experts.

  • Mandatory Fact Citations: Every AI-generated narrative is backed by case data and audit references, accelerating compliance reviews and strengthening regulatory confidence.

At Tookitaki, we recognise that no AI system can be infallible. As leading research highlights, some real-world questions are inherently unanswerable. That is why our goal is not absolute perfection, but precision-driven AI that makes hallucinations statistically negligible and fully traceable — delivering factual integrity at scale.

Talk to an Expert

Conclusion: Factual Integrity Is the Foundation of Trust

Eliminating hallucinations is not just a technical safeguard. It is a governance imperative. Compliance teams that embed evidence-based outputs, rigorous training, human-in-the-loop validation, and retrieval-anchored design will not only reduce wasted effort but also strengthen regulatory confidence and market reputation.

Key Takeaways from Part 3:

  1. AI hallucinations erode trust, waste resources, and expose firms to regulatory risk.

  2. Governance-first frameworks prevent hallucinations by enforcing evidence-backed, auditable outputs.

  3. Zero-hallucination AI is not optional. It is the foundation of responsible financial crime detection.

Are you asking your AI to show its data?
If not, you may be chasing ghosts.

In the next blog, we will explore how building an integrated, agentic AI strategy, linking model creation to real-time risk detection, can shift compliance from reactive to resilient.

Eliminating AI Hallucinations in Financial Crime Detection: A Governance-First Approach
Blogs
13 Oct 2025
6 min
read

When MAS Calls and It’s Not MAS: Inside Singapore’s Latest Impersonation Scam

A phone rings in Singapore.
The caller ID flashes the name of a trusted brand, M1 Limited.
A stern voice claims to be from the Monetary Authority of Singapore (MAS).

“There’s been suspicious activity linked to your identity. To protect your money, we’ll need you to transfer your funds to a safe account immediately.”

For at least 13 Singaporeans since September 2025, this chilling scenario wasn’t fiction. It was the start of an impersonation scam that cost victims more than S$360,000 in a matter of weeks.

Fraudsters had merged two of Singapore’s most trusted institutions, M1 and MAS, into one seamless illusion. And it worked.

The episode underscores a deeper truth: as digital trust grows, it also becomes a weapon. Scammers no longer just mimic banks or brands. They now borrow institutional credibility itself.

Talk to an Expert

The Anatomy of the Scam

According to police advisories, this new impersonation fraud unfolds in a deceptively simple series of steps:

  1. The Setup – A Trusted Name on Caller ID
    Victims receive calls from numbers spoofed to appear as M1’s customer service line. The scammers claim that the victim’s account or personal data has been compromised and is being used for illegal activity.
  2. The Transfer – The MAS Connection
    Mid-call, the victim is redirected to another “officer” who introduces themselves as an investigator from the Monetary Authority of Singapore. The tone shifts to urgency and authority.
  3. The Hook – The ‘Safe Account’ Illusion
    The supposed MAS officer instructs the victim to move money into a “temporary safety account” for protection while an “investigation” is ongoing. Every interaction sounds professional, from background call-centre noise to scripted verification questions.
  4. The Extraction – Clean Sweep
    Once the transfer is made, communication stops. Victims soon realise that their funds, sometimes their life savings, have been drained into mule accounts and dispersed across digital payment channels.

The brilliance of this scam lies in its institutional layering. By impersonating both a telecom company and the national regulator, the fraudsters created a perfect loop of credibility. Each brand reinforced the other, leaving victims little reason to doubt.

Why Victims Fell for It: The Psychology of Authority

Fraudsters have long understood that fear and trust are two sides of the same coin. This scam exploited both with precision.

1. Authority Bias
When a call appears to come from MAS, Singapore’s financial regulator, victims instinctively comply. MAS is synonymous with legitimacy. Questioning its authority feels almost unthinkable.

2. Urgency and Fear
The narrative of “criminal misuse of your identity” triggers panic. Victims are told their accounts are under investigation, pushing them to act immediately before they “lose everything.”

3. Technical Authenticity
Spoofed numbers, legitimate-sounding scripts, and even hold music similar to M1’s call centre lend realism. The environment feels procedural, not predatory.

4. Empathy and Rapport
Scammers often sound calm and helpful. They “guide” victims through the process, framing transfers as protective, not suspicious.

These psychological levers bypass logic. Even well-educated professionals have fallen victim, proving that awareness alone is not enough when deception feels official.

The Laundering Playbook Behind the Scam

Once the funds leave the victim’s account, they enter a machinery that’s disturbingly efficient: the mule network.

1. Placement
Funds first land in personal accounts controlled by local money mules, individuals who allow access to their bank accounts in exchange for commissions. Many are recruited via Telegram or social media ads promising “easy income.”

2. Layering
Within hours, funds are split and moved:

  • To multiple domestic mule accounts under different names.
  • Through remittance platforms and e-wallets to obscure trails.
  • Occasionally into crypto exchanges for rapid conversion and cross-border transfer.

3. Integration
Once the money has been sufficiently layered, it’s reintroduced into the economy through:

  • Purchases of high-value goods such as luxury items or watches.
  • Peer-to-peer transfers masked as legitimate business payments.
  • Real-estate or vehicle purchases under third-party names.

Each stage widens the distance between the victim’s account and the fraudster’s wallet, making recovery almost impossible.

What begins as a phone scam ends as money laundering in motion, linking consumer fraud directly to compliance risk.

A Surge in Sophisticated Scams

This impersonation scheme is part of a larger wave reshaping Singapore’s fraud landscape:

  • Government Agency Impersonations:
    Earlier in 2025, scammers posed as the Ministry of Health and SingPost, tricking victims into paying fake fees for “medical” or “parcel-related” issues.
  • Deepfake CEO and Romance Scams:
    In March 2025, a Singapore finance director nearly lost US$499,000 after a deepfake video impersonated her CEO during a virtual meeting.
  • Job and Mule Recruitment Scams:
    Thousands of locals have been drawn into acting as unwitting money mules through fake job ads offering “commission-based transfers.”

The lines between fraud, identity theft, and laundering are blurring, powered by social engineering and emerging AI tools.

Singapore’s Response: Technology Meets Policy

In an unprecedented move, Singapore’s banks are introducing a new anti-scam safeguard beginning 15 October 2025.

Accounts with balances above S$50,000 will face a 24-hour hold or review when withdrawals exceed 50% of their total funds in a single day.

The goal is to give banks and customers time to verify large or unusual transfers, especially those made under pressure.

This measure complements other initiatives:

  • Anti-Scam Command (ASC): A joint force between the Singapore Police Force, MAS, and IMDA that coordinates intelligence across sectors.
  • Digital Platform Code of Practice: Requiring telcos and platforms to share threat information faster.
  • Money Mule Crackdowns: Banks and police continue to identify and freeze mule accounts, often through real-time data exchange.

It’s an ecosystem-wide effort that recognises what scammers already exploit: financial crime doesn’t operate in silos.

ChatGPT Image Oct 13, 2025, 01_55_40 PM

Red Flags for Banks and Fintechs

To prevent similar losses, financial institutions must detect the digital fingerprints of impersonation scams long before victims report them.

1. Transaction-Level Indicators

  • Sudden high-value transfers from retail accounts to new or unrelated beneficiaries.
  • Full-balance withdrawals or transfers shortly after a suspicious inbound call pattern (if linked data exists).
  • Transfers labelled “safe account,” “temporary holding,” or other unusual memo descriptors.
  • Rapid pass-through transactions to accounts showing no consistent economic activity.

2. KYC/CDD Risk Indicators

  • Accounts receiving multiple inbound transfers from unrelated individuals, indicating mule behaviour.
  • Beneficiaries with no professional link to the victim or stated purpose.
  • Customers with recently opened accounts showing immediate high-velocity fund movements.
  • Repeated links to shared devices, IPs, or contact numbers across “unrelated” customers.

3. Behavioural Red Flags

  • Elderly or mid-income customers attempting large same-day transfers after phone interactions.
  • Requests from customers to “verify” MAS or bank staff, a potential sign of ongoing social engineering.
  • Multiple failed transfer attempts followed by a successful large payment to a new payee.

For compliance and fraud teams, these clues form the basis of scenario-driven detection, revealing intent even before loss occurs.

Why Fragmented Defences Keep Failing

Even with advanced fraud controls, isolated detection still struggles against networked crime.

Each bank sees only what happens within its own perimeter.
Each fintech monitors its own platform.
But scammers move across them all, exploiting the blind spots in between.

That’s the paradox: stronger individual controls, yet weaker collaborative defence.

To close this gap, financial institutions need collaborative intelligence, a way to connect insights across banks, payment platforms, and regulators without breaching data privacy.

How Collaborative Intelligence Changes the Game

That’s precisely where Tookitaki’s AFC Ecosystem comes in.

1. Shared Scenarios, Shared Defence

The AFC Ecosystem brings together compliance experts from across ASEAN and ANZ to contribute and analyse real-world scenarios, including impersonation scams, mule networks, and AI-enabled frauds.
When one member flags a new scam pattern, others gain immediate visibility, turning isolated awareness into collaborative defence.

2. FinCense: Scenario-Driven Detection

Tookitaki’s FinCense platform converts these typologies into actionable detection models.
If a bank in Singapore identifies a “safe account” transfer typology, that logic can instantly be adapted to other institutions through federated learning, without sharing customer data.
It’s collaboration powered by AI, built for privacy.

3. AI Agents for Faster Investigations

FinMate, Tookitaki’s AI copilot, assists investigators by summarising cases, linking entities, and surfacing relationships between mule accounts.
Meanwhile, Smart Disposition automatically narrates alerts, helping analysts focus on risk rather than paperwork.

Together, they accelerate how financial institutions identify, understand, and stop impersonation scams before they scale.

Conclusion: Trust as the New Battleground

Singapore’s latest impersonation scam proves that fraud has evolved. It no longer just exploits systems but the very trust those systems represent.

When fraudsters can sound like regulators and mimic entire call-centre environments, detection must move beyond static rules. It must anticipate scenarios, adapt dynamically, and learn collaboratively.

For banks, fintechs, and regulators, the mission is not just to block transactions. It is to protect trust itself.
Because in the digital economy, trust is the currency everything else depends on.

With collaborative intelligence, real-time detection, and the right technology backbone, that trust can be defended, not just restored after losses but safeguarded before they occur.

When MAS Calls and It’s Not MAS: Inside Singapore’s Latest Impersonation Scam
Blogs
13 Oct 2025
6 min
read

How Collective Intelligence Can Transform AML Collaboration Across ASEAN

Financial crime in ASEAN doesn’t recognise borders — yet many of the region’s financial institutions still defend against it as if it does.

Across Southeast Asia, a wave of interconnected fraud, mule, and laundering operations is exploiting the cracks between countries, institutions, and regulatory systems. These crimes are increasingly digital, fast-moving, and transnational, moving illicit funds through a web of banks, payment apps, and remittance providers.

No single institution can see the full picture anymore. But what if they could — collectively?

That’s the promise of collective intelligence: a new model of anti-financial crime collaboration that helps banks and fintechs move from isolated detection to shared insight, from reactive controls to proactive defence.

Talk to an Expert

The Fragmented Fight Against Financial Crime

For decades, financial institutions in ASEAN have built compliance systems in silos — each operating within its own data, its own alerts, and its own definitions of risk.
Yet today’s criminals don’t operate that way.

They leverage networks. They use the same mule accounts to move money across different platforms. They exploit delays in cross-border data visibility. And they design schemes that appear harmless when viewed within one institution’s walls — but reveal clear criminal intent when seen across the ecosystem.

The result is an uneven playing field:

  • Fragmented visibility: Each bank sees only part of the customer journey.
  • Duplicated effort: Hundreds of institutions investigate similar alerts separately.
  • Delayed response: Without early warning signals from peers, detection lags behind crime.

Even with strong internal controls, compliance teams are chasing symptoms, not patterns. The fight is asymmetric — and criminals know it.

Scenario 1: The Cross-Border Money Mule Network

In 2024, regulators in Malaysia, Singapore, and the Philippines jointly uncovered a sophisticated mule network linked to online job scams.
Victims were recruited through social media posts promising part-time work, asked to “process transactions,” and unknowingly became money mules.

Funds were deposited into personal accounts in the Philippines, layered through remittance corridors into Malaysia, and cashed out via ATMs in Singapore — all within 48 hours.

Each financial institution saw only a fragment:

  • A remittance provider noticed repeated small transfers.
  • A bank saw ATM withdrawals.
  • A payment platform flagged a sudden spike in deposits.

Individually, none of these signals triggered escalation.
But collectively, they painted a clear picture of laundering activity.

This is where collective intelligence could have made the difference — if these institutions shared typologies, device fingerprints, or transaction patterns, the scheme could have been detected far earlier.

Scenario 2: The Regional Scam Syndicate

In 2025, Thai authorities dismantled a syndicate that defrauded victims across ASEAN through fake investment platforms.
Funds collected in Thailand were sent to shell firms in Cambodia and the Philippines, then layered through e-wallets linked to unlicensed payment agents in Vietnam.

Despite multiple suspicious activity reports (SARs) being filed, no single institution could connect the dots fast enough.
Each SAR told a piece of the story, but without shared context — names, merchant IDs, or recurring payment routes — the underlying network remained invisible for months.

By the time the link was established, millions had already vanished.

This case reflects a growing truth: isolation is the weakest point in financial crime defence.

Why Traditional AML Systems Fall Short

Most AML and fraud systems across ASEAN were designed for a slower era — when payments were batch-processed, customer bases were domestic, and typologies evolved over years, not weeks.

Today, they struggle against the scale and speed of digital crime. The challenges echo what community banks face elsewhere:

  • Siloed tools: Transaction monitoring, screening, and onboarding often run on separate platforms.
  • Inconsistent entity view: Fraud and AML systems assess the same customer differently.
  • Fragmented data: No single source of truth for risk or identity.
  • Reactive detection: Alerts are investigated in isolation, without the benefit of peer insights.

The result? High false positives, slow investigations, and missed cross-institutional patterns.

Criminals exploit these blind spots — shifting tactics across borders and platforms faster than detection rules can adapt.

ChatGPT Image Oct 13, 2025, 12_54_11 PM

The Case for Collective Intelligence

Collective intelligence offers a new way forward.

It’s the idea that by pooling anonymised insights, institutions can collectively detect threats no single bank could uncover alone. Instead of sharing raw data, banks and fintechs share patterns, typologies, and red flags — learning from each other’s experiences without compromising confidentiality.

In practice, this looks like:

  • A payment institution sharing a new mule typology with regional peers.
  • A bank leveraging cross-institution risk indicators to validate an alert.
  • Multiple FIs aligning detection logic against a shared set of fraud scenarios.

This model turns what used to be isolated vigilance into a networked defence mechanism.
Each participant adds intelligence that strengthens the whole ecosystem.

How ASEAN Regulators Are Encouraging Collaboration

Collaboration isn’t just an innovation — it’s becoming a regulatory expectation.

  • Singapore: MAS has called for greater intelligence-sharing through public–private partnerships and cross-border AML/CFT collaboration.
  • Philippines: BSP has partnered with industry associations like Fintech Alliance PH to develop joint typology repositories and scenario-based reporting frameworks.
  • Malaysia: BNM’s National Risk Assessment and Financial Sector Blueprint both emphasise collective resilience and information exchange between institutions.

The direction is clear — regulators are recognising that fighting financial crime is a shared responsibility.

AFC Ecosystem: Turning Collaboration into Practice

The AFC Ecosystem brings this vision to life.

It is a community-driven platform where compliance professionals, regulators, and industry experts across ASEAN share real-world financial crime scenarios and red-flag indicators in a structured, secure way.

Each month, members contribute and analyse typologies — from mule recruitment through social media to layering through trade and crypto channels — and receive actionable insights they can operationalise in their own systems.

The result is a collective intelligence engine that grows with every contribution.
When one institution detects a new laundering technique, others gain the early warning before it spreads.

This isn’t about sharing customer data — it’s about sharing knowledge.

FinCense: Turning Shared Intelligence into Detection

While the AFC Ecosystem enables the sharing of typologies and patterns, Tookitaki’s FinCense makes those insights operational.

Through its federated learning model, FinCense can ingest new typologies contributed by the community, simulate them in sandbox environments, and automatically tune thresholds and detection models.

This ensures that once a new scenario is identified within the community, every participating institution can strengthen its defences almost instantly — without sharing sensitive data or compromising privacy.

It’s a practical manifestation of collective defence, where each institution benefits from the learnings of all.

Building the Trust Layer for ASEAN’s Financial System

Trust is the cornerstone of financial stability — and it’s under pressure.
Every scam, laundering scheme, or data breach erodes the confidence that customers, regulators, and institutions place in the system.

To rebuild and sustain that trust, ASEAN’s financial ecosystem needs a new foundation — a trust layer built on shared intelligence, advanced AI, and secure collaboration.

This is where Tookitaki’s approach stands out:

  • FinCense delivers real-time, AI-powered detection across AML and fraud.
  • The AFC Ecosystem unites institutions through shared typologies and collective learning.
  • Together, they form a network of defence that grows stronger with each participant.

The vision isn’t just to comply — it’s to outsmart.
To move from isolated controls to connected intelligence.
To make financial crime not just detectable, but preventable.

Conclusion: The Future of AML in ASEAN is Collective

Financial crime has evolved into a networked enterprise — agile, cross-border, and increasingly digital. The only effective response is a networked defence, built on shared knowledge, collaborative detection, and collective intelligence.

By combining the collaborative power of the AFC Ecosystem with the analytical strength of FinCense, Tookitaki is helping financial institutions across ASEAN stay one step ahead of criminals.

When banks, fintechs, and regulators work together — not just to report but to learn collectively — financial crime loses its greatest advantage: fragmentation.

How Collective Intelligence Can Transform AML Collaboration Across ASEAN